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Introduction

We extend the class of partial membership models to functional data by
defining a partial membership Gaussian process through projections on
the linear subspace spanned by a suitable set of basis functions.

Extension of Finite Mixture Models

A typical model-based representation of functional clustering assumes
that each underlying process is a latent Gaussian process (GP), f¥) ~
GP (u™, C™), with sample paths f; such that
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where pl*) is the mixing proportion for component k, s.t. S p*) = 1.
Equivalently, by introducing latent variables 7; = |7, - - - m;x| (w1 € {0, 1}
and Zle T = 1), we have that
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where p(m;. = 1) = p'¥). By conditioning on the latent ;. variables, we
have

K

D) =S ptm) TLGP (i1 n9,C9)

K
f’i’ﬂla"wﬁ]\fzzwikf(k)‘ (1)
=1

By introducing the latent variables z, = |Z;;--- Z;k|, where Z;. € (0,1)
and Zk , Zi, = 1, we arrive at our proposed partial membership model:
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In equation 2, f*) can no longer be considered mutually independent.
Therefore, we must estimate the cross-covariance functions between the
GPs in order to ensure adequately flexible models, as illustrated below.
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Functional Partial Membership Models

We will assume f*) can be represented by a user-defined set of uni-
formly continuous basis function ({b;,...,bp}). By assuming that f*
span(by, ..., bp), we can leverage the Multivariate Karhunen-Loéve theorem
[2] to get

fP () ~ v B(t) + Z X @ B(1), (3)

with equality when M = K P. In equatlon 3 B(t) is a vector of the P basis
functions evaluated at ¢, v, € RY, ¢, € RY, and x,, ~ N(0,1). Us-
ing this decomposition, we have that p*)(t) = v|B(t) and C%)(t;,t;) ~
2%21 ¢, B(tr) @, B(t;), where C'%J) is the cross-covariance function be-
tween f*) and fU). Using this decomposition, we need O(K PM) param-
eters to model the covariance structure, while a more naive method would
require O(K*P?) parameters.

Using the decomposition in equation 3, we arrive at our likelihood:

yi(1)|© ~N (Z Zi (V;B@) +y Ximqb;mB(t)) ,02) . (4)
k=1

\ 1= _y

FH)
Integrating out the y variables, we arrive at
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One of the drawbacks to using the Multivariate Karhunen-Loeve theorem
is that ¢, B(t) construct scaled eigenfunctions of the covariance operator.
Therefore, we would normally have to sample from a constrained parameter
space to ensure that the eigenfunctions are mutually orthogonal. However,
we show that we can still recover all the parameters of interest when relaxing
the orthogonality constraint.

Autism Spectrum Disorder (ASD)

Autism spectrum disorder (ASD) is a term used to describe individuals
with a collection of social communication deficits and restricted or repeti-
tive sensory-motor behaviors [3]. In the following case studies, we will be
analyzing electroencephalogram (EEG) data of 39 typically developing (TD)
children and 58 children with ASD between the ages of 2 and 12 years old.
Each child was instructed to look at a computer monitor displaying bubbles
for two minutes in a dark, sound-attenuated room [1].
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Fig. 3: Observed data from the T8 electrode.
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Analysis of the T8 Electrode

In this case study, we fit a two functional feature partial membership
model on data from the T8 electrode. The second recovered functional
feature can be interpreted as a mature alpha peak, which has been linked
to neural development in TD children [4]. The first recovered functional
feature is what is known as a 1/ f noise, or pink noise. 1/f noise is ex-
pected to be present for all individuals to some degree, however we can
see that there is no discernible alpha peak.
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We can see that TD children tend to load heavily on the second functional
feature, whereas children with ASD have a higher level of heterogeneity.
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In this project, we proposed a scalable partial membership model that
maintains data-driven learning of the covariance structure. Compared
to previous work on partial membership models, our proposal allows for
iIncreased modeling flexibility, with the benefit of a directly interpretable
mean and covariance structure.
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