Ph.D. Defense

Mixed Membership Models with Applications to Neuroimaging

NICHOLAS MARCO

Advisor: Donatello Telesca Additional Committee Members: Michele Guindani, Damla Şentürk, Joanne Weidhaas

Friday 26th May, 2023

Introduction to Mixed Membership Models

Functional Mixed Membership Models

Covariate Adjusted Mixed Membership Models

- ロト 4 昂 ト 4 ミト 4 ミト - ミー めへぐ

Overview of Clustering

 Clustering analysis is an exploratory task that aims to assign observations into homogeneous subgroups so that we can better understand the data (Hennig et al., 2015)

Overview of Clustering

- Clustering membership can generally be divided into two main categories:
 - 1. *Soft/Fuzzy clustering*: Each observation belong **partially** to each subgroup, akin to **Mixed Membership**
 - ► Mixed Membership Models, Fuzzy C-Means
 - 2. *Hard clustering*: Each observation comes from a **single** (but unknown) subgroup, akin to **Uncertain Membership**
 - ► Finite Mixture Models, K-Means
- Clustering models can generally be divided into two main categories:
 - 1. *Probabilistic/Model-Based clustering*: Construction of a fully probabilistic model of the data, with the clustering labels often thought of as latent variables
 - ► Mixed Membership Models, Finite Mixture Models
 - 2. *Cost-Based clustering*: Achieve clustering by minimizing a cost function to get the optimal clustering labels
 - ► Fuzzy C-Means, K-Means

Overview of Finite Mixture Models

• Finite mixture models are probabilistic clustering models that assume each observation comes from one of the K clusters

 \blacktriangleright The choice of the number of clusters (K) is user-specified

Overview of Mixed Membership Models

Mixed membership models are a generalization of finite mixture models, where membership is considered to be on a spectrum

Mixed Membership Models in Genetics

 Mixed Membership Models often are referred to as *admixture* models in the genetics literature (Pritchard et al., 2000; Tang et al., 2005; Alexander et al., 2009)

Latent Dirichlet Allocation

Topic Models, such as Latent Dirichlet Allocation (Blei et al., 2003), aims to explain a collection of objects (referred to as *documents*) through a set of unobserved subgroups (referred to as *topics*)

Other Mixed Membership Models

▶ Erosheva et al. (2004) used a mixed membership model to classify scientific publications

- ▶ Heller et al. (2008) introduced a fully probabilistic mixed membership framework for data that is assumed to have come from the exponential family of distributions
 - Applied their framework to classifying senators based off of roll call data (binary voting records)

Example: Bivariate Normal (K=3 Features)

▶ The partial membership model framework proposed by Heller et al. (2008) leads to unwieldy implied sampling models, even in cases when we have more than 2 features in the mixed membership model

Introduction to Mixed Membership Models

Functional Mixed Membership Models

Covariate Adjusted Mixed Membership Models

- ロト 4 母 ト 4 ミト 4 ミト - ミー ののの

Motivation: EEG as a Functional Brain Imaging Modality

- ▶ EEG sensors measure distributed neuronal activity on cortical patches perpendicular to the sensors
- We study the response of a population of neurons [Learning, memory formation, task execution, ...]

Resting State EEG and Spectral Features

- Power spectrum analysis associates spectral features in a specific frequency range, with bio-behavioral characterizations of brain activity
- ▶ We focus on the alpha frequency range, whose patterns at rest are thought to play a role in neural coordination and communication between distributed brain regions

EEG Spectral Power (ASD + TD)

- Can we use spectral power dynamics to identify latent neuro-developmental classes?
- ▶ Is the uncertain membership (clustering) framework appropriate for this application?

Functional Data Analysis

- Functional Data Analysis (FDA) focuses on methods used to analyze sample paths of an underlying continuous stochastic process Y
- ► Typically we consider:

 $Y_i(t) = f_i(t) + \epsilon_i(t); \quad f_i(t) \sim GP\{\mu(t), C(\cdot, \cdot)\}; \quad \epsilon_i(t) \sim N(0, \sigma_{\epsilon}^2)$

Note: Often the literature on GP focuses on direct (parametrized) modeling of the covariance function $C(\cdot, \cdot)$

Example: $C(s,t) = a^2 \exp\{-0.5||s-t||^2/\ell^2\}$

FDA: Estimation of C(s, t) from random samples $[Y_1(t), \ldots, Y_n(t)]$

Established literature on flexible priors for $C(\cdot, \cdot)$ [Yang et al., 2017; Montagna et al., 2012; Shamshoian et al., 2022]

Functional Clustering (GP Mixtures)

- The FDA literature on clustering is very mature (James and Sugar, 2003; Chiu and Li, 2007)
- \blacktriangleright From a Bayesian perspective, assuming there exist K latent GPs

$$f^{(k)} \sim \mathcal{GP}\left(\mu^{(k)}, C^{(k)}\right), \ k = 1, 2, \dots, K$$

Each sample paths f_i , (i=1,2,..., N), follows a finite mixture of GPs:

$$p\left(f_{i} \mid \rho^{(1:K)}, \mu^{(1:K)}, C^{(1:K)}\right) = \sum_{k=1}^{K} \rho^{(k)} \mathcal{GP}\left(f_{i} \mid \mu^{(k)}, C^{(k)}\right);$$

where $\rho^{(k)} \in [0, 1]$ is the mixing proportion quantifying uncertain membership to the k^{th} GP

Functional Clustering vs. Functional Mixed Membership

Mixed Membership Functions

► Mixed membership process:

$$f_i \mid \mathbf{z}_i =_d \sum_{k=1}^K Z_{ik} f^{(k)}$$

► The proposed sampling model assumes

$$f_i \mid \boldsymbol{\Theta} \sim GP\left(\sum_k Z_{ik} \mu^{(k)}, \ \sum_k Z_{ik}^2 C^{(k)} + \sum_k \sum_{k' \neq k} Z_{ik} Z_{ik'} C^{(k,k')}\right)$$

▶ Model K Gaussian Processes (GPs), $f^{(k)}$

► K mean functions,
$$\mu^{(k)}(t)$$

► K covariance functions, $C^{(k,k)}(s,t)$
► $\frac{K(K-1)}{2}$ cross-covariance functions, $C^{(k,j)}(t_k,t_k)$

Joint Representation of K Gaussian Processes

- ► We assume f^(k) can be represented by a set of uniformly continuous basis functions.
- \blacktriangleright Let **B**(t) is a vector of the P basis functions evaluated at t
- The Multivariate Karhunen-Loève theorem (Happ and Greven, 2018) jointly decomposes K GPs:

$$f^{(k)}(t) = \boldsymbol{\nu}'_k \mathbf{B}(t) + \sum_{m=1}^{KP} \chi_m \boldsymbol{\phi}'_{km} \mathbf{B}(t), \qquad (1)$$

where $\boldsymbol{\nu}_k \in \mathbb{R}^P$, $\boldsymbol{\phi}_{km} \in \mathbb{R}^P$, and $\chi_m \sim \mathcal{N}(0, 1)$

▶ Using this decomposition, we have:

Multivariate Karhunen-Loève Theorem (cont.)

The Karhunen-Loève theorem typically allows for a reduced dimensional representation with $M \leq KP$ components, s.t.

$$f^{(k)}(t) \approx \boldsymbol{\nu}_{k}^{\prime} \mathbf{B}(t) + \sum_{m=1}^{M} \chi_{m} \boldsymbol{\phi}_{km}^{\prime} \mathbf{B}(t), \qquad (2)$$

▶ Number of parameters needed to model the covariance structure:

▶ Multivariate Karhunen-Loève: O(KPM)
 ▶ Naïve : O(K²P²)

Finite Dimensional Margins

▶ $Z_{ik} \in (0,1) \longrightarrow$ mixed membership proportion of path *i* belonging to GP (*k*)

▶ Using the multivariate KL construction, we obtain:

$$y_i(t)|\boldsymbol{\Theta} \sim \mathcal{N}\left(\sum_{k=1}^{K} Z_{ik}\left(\underbrace{\boldsymbol{\nu}'_k \mathbf{B}(t) + \sum_{m=1}^{M} \chi_{im} \boldsymbol{\phi}'_{km} \mathbf{B}(t)}_{f^{(k)}(t)}\right), \ \sigma^2\right)$$
(3)

• Integrating over χ_i yields

$$y_{i}(\mathbf{t}_{i})|\Theta_{-\chi} \sim \mathcal{N}\left(\sum_{k=1}^{K} Z_{ik} \underbrace{\mathbf{S}'(\mathbf{t}_{i})\boldsymbol{\nu}_{k}}_{\boldsymbol{\mu}^{(k)}(\mathbf{t}_{i})}, \sum_{k=1}^{K} \sum_{j=1}^{K} Z_{ik} Z_{ij} \left(\underbrace{\mathbf{S}'(\mathbf{t}_{i}) \sum_{m=1}^{M} \left(\phi_{km} \phi'_{jm}\right) \mathbf{S}(\mathbf{t}_{i})}_{(4)}\right)}_{\boldsymbol{\mu}^{(k)}(\mathbf{t}_{i})} + \sigma^{2} \mathbf{I}_{n_{i}}\right)$$

Prior Distributions

• The ϕ parameters construct scaled eigenfunctions of the covariance operator

Mutually orthogonal

▶ Magnitude of the scaled eigenfunctions should decrease

 Multiplicative gamma process shrinkage prior (Bhattacharya and Dunson, 2011)

$$\phi_{kpm}|\gamma_{kpm}, \tilde{\tau}_{mk} \sim \mathcal{N}\left(0, \gamma_{kpm}^{-1}\tilde{\tau}_{mk}^{-1}\right),$$

$$\gamma_{kpm} \sim \Gamma\left(\nu_{\gamma}/2, \nu_{\gamma}/2\right), \quad \tilde{\tau}_{mk} = \prod_{n=1} \delta_{nk}$$

 $\delta_{1k} \sim \Gamma(a_{1k}, 1), \quad \delta_{jk} \sim \Gamma(a_{2k}, 1), \quad a_{1k} \sim \Gamma(\alpha_1, \beta_1), \quad a_{2k} \sim \Gamma(\alpha_2, \beta_2)$

Posterior Distributions

• Let
$$\Sigma_{jk} := \sum_{p=1}^{KP} \left(\phi_{jp} \phi'_{kp} \right)$$
 and
 $\boldsymbol{\omega} := \left\{ \boldsymbol{\nu}_1, \dots, \boldsymbol{\nu}_K, \Sigma_{11}, \dots, \Sigma_{1K}, \dots, \Sigma_{KK}, \sigma^2 \right\}.$

- ► The parameters in $\omega \in \Omega$ completely specify the mean and covariance structure of our model. We will denote the true set of parameters as ω_0
- ► Assumptions:
 - 1. $\mathbf{Y}_1, \ldots, \mathbf{Y}_n$ are observed on a grid of R points (R > KP) in the domain, $\{t_1, \ldots, t_R\}$
 - 2. The variables Z_{ik} are fixed and known (not-random)
 - 3. $\sigma_0^2 > 0$
- ► Consider the fully saturated model (M = KP). Under these assumptions, the posterior distribution is weakly consistent at $\omega_0 \in \Omega$

Operating Characteristics on Engineered Data

(ロト 4 昼 ト 4 匡 ト 4 匡 ト 三 三 - のへで

Selecting the Number of Features

・ロト (雪) (声) (声) (日)

Case Study: Peak Alpha Frequency (TD and ASD)

- Autism spectrum disorder (ASD) is a term used to describe individuals with a collection of social communication deficits and restricted or repetitive sensory-motor behaviors
- ➤ This case study contains electroencephalogram (EEG) data for 39 typically developing (TD) children and 58 children with ASD between the ages of 2 and 12 years old
- We fit a 2 functional feature mixed membership model on data from the T8 electrode

EEG Case Study Data

Figure: EEG data from the T8 electrode for 20 individuals (ASD and TD) $\,$

EEG Case Study Data (cont.)

Figure: Posterior median and 95% credible (pointwise credible interval in dark gray and simultaneous credible interval in light gray) of the mean function for each latent functional feature.

EEG Case Study (cont.)

Children with an TD clinical diagnosis are highly likely to load on the second functional feature, whereas children with ASD exhibit a higher level of heterogeneity

EEG Case Study Data (Functional Clustering)

Introduction to Mixed Membership Models

Functional Mixed Membership Models

Covariate Adjusted Mixed Membership Models

- ロト 4 聞 ト 4 三 ト 4 三 - うえぐ

Motivation: Peak Alpha Frequency Shift with Aging

As typically developing children grow, the alpha peak tends to becomes more prominent and the PAF shifts to a higher frequency (Rodríguez-Martínez et al., 2017; Scheffler et al., 2019)

(Scheffler et al., 2019)

Covariate Adjusted Clustering

- Mixture of Experts models and Mixture of Regressions models are two common covariate-dependent clustering models where the mean components of the mixtures are dependent on the covariates of interest
 - Mixture of Experts models also assume that cluster membership also depends on the covariates of interest

Covariate Adjusted Clustering

▶ Gaussian finite mixture models (GFMM) can be expressed as

$$f_i \mid \boldsymbol{\pi}_i, \mu^{(1:K)}, C^{(1:K)} \sim \mathcal{GP}\left(\sum_{k=1}^K \pi_{ik} \mu^{(k)}, \sum_{k=1}^K \pi_{ik} C^{(k)}\right)$$

Similarly, we can extend the framework of GFMMs to arrive at the Mixture of Regressions Model framework (5) and Mixture of Experts framework (6):

$$f_i \mid \mathbf{X}, \boldsymbol{\Theta} \sim \mathcal{GP}\left(\sum_{k=1}^{K} \pi_{ik} \mu^{(k)}(\mathbf{x}_i), \sum_{k=1}^{K} \pi_{ik} C^{(k)}\right)$$
(5)

 $P(f_i \mid \mathbf{X}, \mathbf{\Theta}) = \overline{\sum_{k=1}^{K} \pi_{ik}(\mathbf{x}_i, \boldsymbol{\alpha}_k) \ \mathcal{GP}\left(f_i \mid \mu^{(k)}(\mathbf{x}_i), C^{(k)}\right)}$ (6)

▶ The mean function, $\mu^{(k)}(\mathbf{x}_i)$, is often modeled through a regression framework

Function-on-Scalar Regression

- Function-on-scalar regression is a common method in FDA which allows the mean structure of the continuous stochastic process to be covariate-dependent
 - ▶ The covariates of interest are scalar or vector-valued, while the response is functional
- ▶ The general form of function-on-scalar regression can be expressed as follows:

$$Y(t) = \mu(t) + \sum_{r=1}^{R} X_r \beta_r(t) + \epsilon(t); \quad t \in \mathcal{T},$$
(7)

- The mean function $(\mu(t))$ and the functional coefficients $(\beta_r(t))$ are infinite dimensional parameters, making inference intractable
 - ▶ We typically assume that the data lie in the span of a finite set of basis functions $(b_1(t), \ldots, b_p(t))$
 - ► *A*-priori specified basis functions
 - ▶ Data-driven basis functions (F-PCA)

Function-on-Scalar Regression, Mixture of Regressions, and CAFMM Models

- Function-on-scalar regression can be considered a population level analysis, where the covariates have the same effects on each observation
- Gaussian mixture of regressions models can be considered a sub-population level analysis, where covariates the covariate effects on the mean structure depend on which cluster an observation belongs to

$$f_i \mid \mathbf{X}, \boldsymbol{\Theta} \sim \mathcal{GP}\left(\sum_{k=1}^{K} \pi_{ik} \left(\mu_k + \sum_{r=1}^{R} X_{ir} \beta_{kr} \right), \sum_{k=1}^{K} \pi_{ik} C^{(k)} \right)$$

- Covariate adjusted functional mixed membership (CAFMM) models can be considered an individual level analysis, where each observation has a different allocation vector
 - Each underlying feature has a unique mean structure (covariate-dependent) and covariance structure
Extension to CAFMM Models

▶ The functional mixed membership model can be expressed as

$$\mathbf{x}_i | \mathbf{z}_{(1:N)} =_d \sum_{i=1}^K Z_{ik} \mathbf{f}_k,$$

where

$$f^{(k)} \sim \mathcal{GP}\left(\mu^{(k)}, C^{(k)}\right), \ k = 1, 2, \dots, K$$

▶ This leads to the following likelihood:

$$f_i \mid \boldsymbol{\Theta} \sim GP\left(\sum_k Z_{ik} \mu^{(k)}, \ \sum_k Z_{ik}^2 C^{(k)} + \sum_k \sum_{k' \neq k} Z_{ik} Z_{ik'} C^{(k,k')}\right)$$

• Leveraging the function-on-scalar framework, we can arrive at the general form of the proposed CAFMM model

$$f_i \mid \boldsymbol{\Theta} \sim GP\left(\sum_k Z_{ik} \left(\mu^{(k)} + \boldsymbol{X}_{ir} \boldsymbol{\beta}_{rk} \right), \ \sum_k \sum_{k'} Z_{ik} Z_{ik'} C^{(k,k')} \right)$$

Example of a Covariate Adjusted Mean Structure

▲□▶ ▲舂▶ ▲≧▶ ▲≧▶ 三回 ⊘�?

Finite Dimensional Marginal Distributions

- Let $\mathbf{x}_i \in \mathbb{R}^R$ be the vector of covariates for the i^{th} observation
- Using the multivariate KL construction and the assumption that the features lie in the user-defined basis, we obtain the functional model:

$$\mathbf{Y}_{i}(\mathbf{t}_{i})|\boldsymbol{\Theta}, \mathbf{X} \sim \mathcal{N}\left\{\sum_{k=1}^{K} Z_{ik}\left(\mathbf{S}'(\mathbf{t}_{i})\left(\boldsymbol{\nu}_{k}+\boldsymbol{\eta}, \mathbf{x}\right)+\sum_{m=1}^{M} \chi_{im}\mathbf{S}'(\mathbf{t}_{i})\left(\boldsymbol{\phi}_{km}\right)\right), \ \sigma^{2}\mathbf{I}_{n_{i}}\right\}$$

▶ Integrating our the χ_{im} parameters, we have

$$y_{i}(\mathbf{t}_{i})|\boldsymbol{\Theta}_{-\chi} \sim \mathcal{N}\left(\sum_{k=1}^{K} Z_{ik}\mathbf{S}'(\mathbf{t}_{i})\left(\boldsymbol{\nu}_{k}+\boldsymbol{\eta}_{k}\mathbf{x}_{i}\right), \sum_{k=1}^{K} \sum_{j=1}^{K} Z_{ik}Z_{ij}\left(\mathbf{S}'(\mathbf{t}_{i})\sum_{m=1}^{M}\left(\boldsymbol{\phi}_{km}\boldsymbol{\phi}_{jm}'\right)\mathbf{S}(\mathbf{t}_{i})\right) + \sigma^{2}\mathbf{I}_{n_{i}}\right)$$

$$(8)$$

► $\eta_k \in \mathbb{R}^{P \times R}$ represents the covariate adjustment to the mean structure of the k^{th} feature

Identifiability

• Let ω be a set of parameters

► The parameters $\boldsymbol{\omega}$ are unidentifiable if there exists at least one $\boldsymbol{\omega}^* \neq \boldsymbol{\omega}$ such that $\mathcal{L}(\mathbf{Y}_i(\mathbf{t}_i) \mid \boldsymbol{\omega}, \mathbf{x}_i) = \mathcal{L}(\mathbf{Y}_i(\mathbf{t}_i) \mid \boldsymbol{\omega}^*, \mathbf{x}_i)$ for all sets of observations $\{\mathbf{Y}_i(\mathbf{t}_i)\}_{i=1}^N$

• Otherwise, the parameters ω are called identifiable

- The *label switching* problem is a common source of unidentifiability in finite mixture models.
- What conditions do we need on the parameters ω and design matrix X to ensure identifiability?

Identifiability

Lemma: Consider a two feature (K = 2) covariate adjusted model as specified in Equation 39. The parameters $\boldsymbol{\nu}_k$, $\boldsymbol{\eta}_k$, Z_{ik} , $\sum_{m=1}^{M} (\boldsymbol{\phi}_{km} \boldsymbol{\phi}'_{k'm})$, and σ^2 are identifiable up to a permutation of the labels (i.e. label switching), for $k, k' = 1, 2, n = 1, \ldots, N$, and $m = 1, \ldots, M$, given the following assumptions:

1. \mathbf{X} is full column rank with 1 not in the column space of \mathbf{X} .

- 2. The separability condition holds on the allocation matrix (there exists \tilde{i}_1, \tilde{i}_2 such that $Z_{\tilde{i}_11} = 1$ and $Z_{\tilde{i}_22} = 1$). Moreover, there exists at least 2 observations with allocation parameters that lie in the interior of the unit simplex (i.e. $\mathbf{z}_i \in \left\{ \mathbf{z} \in \mathbb{R}^2 \mid \sum_{k=1}^2 Z_k = 1, 0 < Z_k < 1 \right\}$).
- 3. The sample paths $\mathbf{Y}_i(\mathbf{t}_i)$ are sampled such that $n_i \geq P$, and furthermore, there exists a sample path $\mathbf{Y}_i(\mathbf{t}_i)$ such that $n_i > 4M$.

Revisiting the ASD Case Study

- Autism spectrum disorder (ASD) is a term used to describe individuals with a collection of social communication deficits and restricted or repetitive sensory-motor behaviors
- ➤ This case study contains electroencephalogram (EEG) data for 39 typically developing (TD) children and 58 children with ASD between the ages of 2 and 12 years old
- We fit a 2 CAFMM model on data from the T8 electrode with Age as the covariate of interest

Function-on-Scalar Regression (Covariates: Age)

Figure: (Left) Data colored by age at the time of recording. (Right) Results from a function-on-scalar regression.

CAFMM Model (Covariates: Age)

Figure: (Top Left) Mean of the first feature at various ages. (Top Right) Mean of the second feature at various ages. (Bottom) Estimated allocation features stratified by clinical diagnosis.

Function-on-Scalar Regression (Covariates: Age and Clinical Diagnosis)

Figure: Results from a function-on-scalar regression with age and clinvial diagnosis as the covariates of interest.

CAFMM Model (Covariates: Age and Clinical Diagnosis)

CAFMM Model (Covariates: Age and Clinical Diagnosis)

Figure: Estimated average developmental trajectory of alpha oscillations stratified by diagnostic group.

Summary

- ▶ Interpretable sampling models allow us to easily interpret the mean and covariance structure
- Multivariate KL constructions allow for efficient representation and dimension reduction of multivariate GPs
- In our applications, results are robust to increasing dimensionality (multi-channel analyses)
- Covariate adjusted functional mixture models can be thought of as a generalization of function-on-scalar regression

Thank You!

R Packages

BayesFMMM Funct. Mixed Membership Models https://github.com/ndmarco/BayesFMMM

Manuscripts

 Marco N, Senturk D, Jeste S, Dickinson A and D. Telesca D (2022) Functional Mixed Membership Models. (arXiv:2206.12084).

 Marco N, Senturk D, Jeste S, Dickinson A and D. Telesca D (2022) Flexible Regularized Estimation in High-Dimensional Mixed Membership Models (arXiv:2212.06906)

Funding

R01 MH122428-01 (DS, DT) from the NIH/NIMH

Construction of a Finite Mixture Model

• Let $\pi_{ik} \in \{0, 1\}$ $(\sum_k \pi_{ik} = 1)$ denote whether or not the i^{th} observation belongs to the k^{th} cluster, by the law of total probability we have:

$$P(Y_i) = P(Y_i \mid \pi_{i1} = 1) P(\pi_{i1} = 1) + \dots + P(Y \mid \pi_{iK} = 1) P(\pi_{iK} = 1)$$
$$= \sum_{k=1}^{K} m P(Y_i \mid \pi_{ik} = 1)$$

Construction of a Finite Mixture Model

Assuming that the distributions of the clusters are in the exponential family, we have

$$P(Y_i \mid \boldsymbol{\theta}_{1:K}) = \rho_k P(Y_i \mid \boldsymbol{\theta}_k)$$

• Using the latent variables $\pi_i = [\pi_{i1}, \ldots, \pi_{iK}]$ $(\pi_{ik} \in \{0, 1\}$ and $\sum_{k=1}^{K} \pi_{ik} = 1)$, we have

$$P\left(Y_{i} \mid \boldsymbol{\pi}_{i}, \boldsymbol{\theta}_{(1:K)}\right) = \sum_{\boldsymbol{\pi}_{i}} P(\boldsymbol{\pi}_{i}) \prod_{i=1}^{K} P\left(Y_{i} \mid \boldsymbol{\theta}_{k}\right)^{\pi_{ik}},$$

where $P(\pi_{ik} = 1) = \rho_k$

Extension to Heller's Characterization of Partial Membership Models

- Let $\mathbf{z}_i = [Z_{i1}, \ldots, Z_{iK}]$, where $Z_{ik} \in [0, 1]$ and $\sum_k Z_{ik} = 1$, represent the *i*th observation's proportion of membership to the K^{th} feature
- ▶ Using these latent variables, we arrive at the general form proposed in Heller et al. (2008):

$$P\left(Y_{i} \mid \mathbf{z}_{i}, \boldsymbol{\theta}_{(1:K)}\right) \propto \int_{\mathbf{z}_{i}} P(\mathbf{z}_{i}) \prod_{i=1}^{K} P\left(Y_{i} \mid \boldsymbol{\theta}_{k}\right)^{Z_{ik}} \mathrm{d}\mathbf{z}_{i}$$

► Assuming the distributions of the features are in the exponential family (i.e. $Y_i | \boldsymbol{\theta}_k \sim \text{Expon}(\boldsymbol{\theta}_k)$), we have

$$Y_i \mid \mathbf{z}_i, \boldsymbol{ heta}_{(1:K)} \sim \operatorname{Expon}\left(\sum_k Z_{ik} \boldsymbol{ heta}_k\right)$$

Extension to Heller's Characterization of Partial Membership Models

• Assuming that the features follow a Gaussian distribution, where ν_k and \mathbf{C}_k denote the corresponding mean and covariance parameters of the k^{th} feature, we have that

$$Y_i \mid \mathbf{z}_i, \boldsymbol{\nu}_{(1:K)}, \mathbf{C}_{(1:K)} \sim \mathcal{N} \left(\mathbf{H}_i \mathbf{h}_i, \mathbf{H}_i \right),$$

where
$$\mathbf{h}_i = \sum_{k=1}^K \pi_{ik} \mathbf{C}_k^{-1} \boldsymbol{\nu}_k$$
 and $\mathbf{H}_i = \left(\sum_{k=1}^K \pi_{ik} \mathbf{C}_k^{-1}\right)^{-1}$

Extension to our Proposed Mixed Membership Model

▶ In a Gaussian finite mixture model, we have:

$$p\left(\mathbf{x}_{i}|\rho_{(1:K)},\boldsymbol{\nu}_{(1:K)},\mathbf{C}_{(1:K)}\right) = \sum_{\boldsymbol{\pi}_{i}} p(\boldsymbol{\pi}_{i}) \prod_{i=1}^{K} \mathcal{N}\left(\mathbf{x}_{i}|\boldsymbol{\nu}_{k},\mathbf{C}_{k}\right)^{\pi_{ik}}$$

▶ If we condition on the membership parameters, we get:

$$\mathbf{x}_i | \boldsymbol{\pi}_{(1:N)} =_d \sum_{i=1}^K \pi_{ik} \mathbf{f}_k,$$

where $\mathbf{f}_k \sim \mathcal{N}\left(\boldsymbol{\nu}_k, \mathbf{C}_k\right)$

► Thus we can rewrite the likelihood as:

$$\mathbf{x}_{i}|\boldsymbol{\pi}_{(1:N)},\boldsymbol{\nu}_{(1:K)},\mathbf{C}_{(1:K)}\sim\mathcal{N}\left(\sum_{k=1}^{K}\pi_{ik}\boldsymbol{\nu}_{k},\sum_{k=1}^{K}\pi_{ik}\mathbf{C}_{k}\right)$$

- ロ ト 4 昼 ト 4 亘 ト - 亘 - りへ(で)

Extension to our Proposed Mixed Membership Model

▶ We can extend this to our partial membership model by introducing variables $\mathbf{z}_i = [Z_{i1}, \ldots, Z_{iK}]$ $(Z_{ik} \in [0, 1], \sum_k Z_{ik} = 1)$ such that:

$$\mathbf{x}_i | \mathbf{z}_{(1:N)} =_d \sum_{i=1}^K Z_{ik} \mathbf{f}_k$$

- We can't assume that the *features* (\mathbf{f}_k) are independent
- ► Let C^(k,k') = Cov(f_k, f_{k'}) denote the cross-covariance between the feature k and feature k'
- Letting \mathcal{C} denote the collection of covariance and cross-covariance matrices, we have

$$\mathbf{x}_{i}|\mathbf{z}_{(1:N)}, \boldsymbol{\nu}_{(1:K)}, \boldsymbol{\mathcal{C}} \sim \mathcal{N}\left(\sum_{k=1}^{K} Z_{ik}\boldsymbol{\nu}_{k}, \sum_{k=1}^{K} Z_{ik}^{2}\mathbf{C}_{k} + \sum_{k=1}^{K} \sum_{k \neq k'} Z_{ik} Z_{ik'}\mathbf{C}^{(k,k')}\right)$$

Relation to Other Mixed Membership Models

▶ The proposed representation is more flexible and interpretable compared to other MMMs (i.e. Heller et al., 2008).

Visualizations of Clustering Models

Feature Allocation Models

Joint Decomposition

• Letting $\mathbf{F} = [\mathbf{f}_1, \dots, \mathbf{f}_K]$, we we have that

$$\operatorname{Cov}(\operatorname{vec}(\mathbf{F})) = \boldsymbol{\Sigma} = \begin{bmatrix} \mathbf{C}^{(1,1)} & \dots & \mathbf{C}^{(1,K)} \\ \vdots & \ddots & \vdots \\ \mathbf{C}^{(K,1)} & \dots & \mathbf{C}^{(K,K)} \end{bmatrix}$$

• Letting $\Phi_m = [\phi'_{1m} \dots \phi'_{Km}]'$ be scaled eigenvectors of Σ , we have

$$\mathbf{C}^{(k,k')} = \sum_{m=1}^{PK} oldsymbol{\phi}_{km} oldsymbol{\phi}_{k'm}^{\prime}$$

Thus we have that $\operatorname{vec}(\mathbf{F}) \approx \operatorname{vec}(\boldsymbol{\mu}) + \sum_{m=1}^{M} \chi_m \boldsymbol{\Phi}_m$ or $\mathbf{f}_k \approx \boldsymbol{\nu}_k + \sum_{m=1}^{M} \chi_m \boldsymbol{\phi}_{km}$, where $\chi_m \sim \mathcal{N}(0, 1)$

Model Specification

▶ Using the approximation, we obtain:

$$\mathbf{y}_{i}|\boldsymbol{\Theta} \sim \mathcal{N}\left(\sum_{k=1}^{K} Z_{ik} \underbrace{\left(\boldsymbol{\nu}_{k} + \sum_{m=1}^{M} \chi_{im} \boldsymbol{\phi}_{km}\right)}_{f^{(k)}(t)}, \sigma^{2} \mathbf{I}_{P}\right)$$

▶ If we integrate out the χ_{im} variables, we obtain:

$$\mathbf{y}_{i} | \mathbf{\Theta}_{-\chi} \sim \mathcal{N}\left(\sum_{k=1}^{K} Z_{ik} \boldsymbol{\nu}_{k}, \left(\sum_{k=1}^{K} \sum_{k'=1}^{K} Z_{ik} Z_{ik'} \underbrace{\left(\sum_{m=1}^{M} \boldsymbol{\phi}_{km} \boldsymbol{\phi}_{k'm}^{\prime}\right)}_{C^{(k,k')}}\right) + \sigma^{2} \mathbf{I}_{P}\right)$$

- In 2014, there were an estimated 534,000 deaths due to breast cancer worldwide (Wang et al.,2016)
- In the past two decades, 5 molecular subtypes of breast cancer have been discovered; each with a different prognosis, risk factors, and treatment sensitivity (Prat et al., 2015)
- ▶ In 2009, Parker et al. discovered that the cancer subtype can be accurately classified by centroid-based prediction methods using gene expression data from 50 genes (PAM50)
- ▶ We fit a 3 feature mixed membership model on gene expression data from PAM50, using patients with LumA, Basal, and Her2 cancer subtypes

<ロト 4 回 ト 4 三 ト 4 回 ト 4 回 ト 4 回 ト</p>

(ロト 4 酉 ト 4 亘 ト 4 亘 - の 9 0

Figure: Visualization of the correlation structure of the each feature (Feature 1: Left, Feature 2: Middle, Feature 3: Right)

Simulation Study: Recovery of Parameters

・ロト ・昼 ト ・ 臣 ト ・ 臣 ・ りへの

Simulation Study: Information Criteria

Unidentifiability of Allocation Parameters

Identifiability of Allocation Parameters

 Seperability condition: at least one observation belongs entirely in each feature

 Sufficiently Scattered condition: an allocation matrix Z is sufficiently scattered if:

1. $\operatorname{cone}(\mathbf{Z}')^* \subseteq \mathcal{K}$ 2. $\operatorname{cone}(\mathbf{Z}')^* \cap bd\mathcal{K} \subseteq \{\lambda \mathbf{e}_f, f = 1, \dots, k, \lambda \ge 0\}$ where $\mathcal{K} := \{\mathbf{x} \in \mathbb{R}^K | \|\mathbf{x}\|_2 \le \mathbf{x}' \mathbf{1}_K\},$ $bd\mathcal{K} := \{\mathbf{x} \in \mathbb{R}^K | \|\mathbf{x}\|_2 = \mathbf{x}' \mathbf{1}_K\},$ $\operatorname{cone}(\mathbf{Z}')^* := \{\mathbf{x} \in \mathbb{R}^K | \mathbf{x}\mathbf{Z}' \ge 0\}, \text{ and } \mathbf{e}_f \text{ is a vector with the } i^{th}$ element equal to 1 and zero elsewhere.

Effects of the Cross-Covariance Function

$$\operatorname{Cov}^{(X,Y)}(s,t) = \operatorname{Cov}\left(X(s), Y(t)\right)$$

▲ロト ▲聞 ト ▲ 臣 ト ▲ 臣 - ● ○ ○ ○

EEG Case Study (cont.)

Figure: Posterior estimates of the covariance functions (From left to right: covariance of feature 1, covariance of feature 2, cross-covariance between features 1 and 2)

Analysis of Multi-Channel EEG Data

- ▶ In the previous case study, we only used the T8 electrode and discarded the information from the 24 other electrodes
- For this case study, we will model all electrodes using a functional model, assuming $\mathcal{T} \subset \mathbb{R}^3$
 - Two of the indices will contain the spatial location of the electrodes
 - The third index will contain the frequency domain

Analysis of Multi-Channel EEG Data (cont.)

Figure: Posterior estimates of the means of the two functional features viewed at specific electrodes of interest

Analysis of Multi-Channel EEG Data (cont.)

Figure: Variance of electrodes at 6 Hz (left) and 10 Hz (right)

► For the second functional feature, we can see that there is high heterogeneity around the T8 electrode at 6 Hz
Conditional Predictive Ordinate (CPO)

▲ロト ▲昼 ▶ ▲臣 ▶ ▲臣 ▶ ▲ □ ▶ ▲ □ ▶ ▲

Sim Study (Covariate Adjusted)

Truth / Model	Parameter	N = 60	N = 120	N = 240
(# Covariates)				
2/2	μ_1	1.9% (0.3%, 24.7%)	1.1% (0.2%, 10.4%)	0.3%(0.1%, 8.8%)
	μ_2	1.5% (0.4%, 14.5%)	1.0% (0.2%, 10.5%)	0.2% (0.1%, 10.9%)
		156.1% (2.1%, 112219.4%)	110.3% (0.1%, 1806067.0%)	6.1% (0.1%, 362938.9%)
		88.1% (1.8%, 60673.8%)	416.2% (1.9%, 1008651.0%)	4.9% (0.5%, 22725.8%)
	$C^{(1,2)}$	431.2% (3.5%, 35924.4%)	433.7% (2.2%, 246646.3%)	22.3% (0.6%, 29231.3%)
	Z	0.047 (0.020, 0.099)	0.030 (0.013, 0.074)	0.013 (0.008, 0.054)
		N = 50	N = 100	N = 200
1/1	μ_1	1.5% (0.2%, 7.6%)	0.8% ($0.1%$, $4.9%$)	1.1%(0.2%,5.4%)
		1.6% (0.3%, 5.7%)	1.2% (0.2%, 7.6%)	1.2% (0.2%, 5.4%)
	$C^{(1,1)}$	218.5% (26.0%, 11299.6%)	30.8% (14.4%, $308.4%$)	37.1% (9.5%, 421.2%)
	$C^{(2,2)}$	204.4% (22.5%, 2603.4%)	40.2% (8.3%, 597.6%)	25.5% (5.7%, 157.7%)
	$C^{(1,2)}$	219.8% (42.9%, 1912.9%)	89.1% (21.2%, 403.0%)	60.6% (13.0%, 350.2%)
	Ζ	0.067 (0.047, 0.085)	0.056 (0.042, 0.081)	0.051 (0.040, 0.065)
		382.2% (153.4%, 961.9%)	650.7% (91.1%, 1511.0%)	1076.7%(94.8%,2339.0%)
		394.6% (117.5%,1292.3%)	751.4% (69.0%, 1721.0%)	885.1% (145.0%, 2313.0%)
	$C^{(1,1)}$	1581365.0% (81644.7%, 23059352.5%)	1328559.4% (64656.5%, 40230314.1%)	1348112.9% (98035.6%, 65828353.0%)
		730829.2% (133764.2%, 9829513.4%)	1015747.1% (86551.9%, 17361755.8%)	802590.5% (44704.4%, 21037857.8%)
	$C^{(1,2)}$	1271237.9% (90303.1%, 9356418.4%)	1917180.3% (91394.3%, 20373022.9%)	1392890.2% (81254.1%, 19419032.6%)
	Z	0.202 (0.180, 0.217)	0.172 (0.157, 0.184)	0.144 (0.121, 0.156)
		N = 40	N = 80	N = 160
0/1		2.3% (0.3%, 36.7%)	2.5% (0.2%, 33.6%)	1.9%(0.2%, 20.4%)
		4.1% (0.3%,36.1%)	1.9% (0.3%, 21.6%)	3.8% (0.2%, 26.1%)
	$C^{(1,1)}_{$	27.1% (7.7%, 703.6%)	19.1% (3.3%, 95.5%)	20.3% (3.1%, 64.9%)
	$C^{(2,2)}$	28.9% (9.4%, 319.1%)	19.0% (3.7%, 206.9%)	13.5% (3.0%, 74.8%)
	$C^{(1,2)}$	31.4% (8.8%, 353.3%)	24.2% (7.7%, 61.2%)	26.9% (4.9%, 67.1%)
	Z	0.0957 (0.070, 0.148)	0.083 (0.061, 0.107)	0.068 (0.048, 0.088)
0/0		0.23% ($0.04%$, $1.23%$)	0.12% ($0.01%$, $0.35%$)	0.04%(0.01%, 0.31%)
	μ_2	0.27% ($0.09%$, $0.88%$)	0.12% ($0.02%$, $0.42%$)	0.04% (0.01%, 0.31%)
	$C^{(1,1)}$	3.5% (0.9%, 16.0%)	1.9% (0.3%, 7.4%)	1.3% (0.3%, 4.4%)
		4.5% (0.6%, 18.0%)	1.6% (0.3%, 8.0%)	1.1% (0.2%, 4.5%)
	$C^{(1,2)}$	5.3% (1.1%, 19.9%)	2.0% (0.6%, 9.5%)	1.3% (0.6%, 5.4%)
		0.032 (0.023, 0.049)	0.018 (0.013, 0.024)	0.011 (0.009 , 0.015)