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Introduction to Mixed Membership Models



Overview of Clustering

» Clustering analysis is an exploratory task that aims to assign
observations into homogeneous subgroups so that we can better
understand the data (Hennig et al., 2015)




Overview of Clustering

» Clustering membership can generally be divided into two main

categories:
1. : Each observation belong partially
to each subgroup, akin to Mixed Membership
> , Fuzzy C-Means

2. Hard clustering: Each observation comes from a single (but
unknown) subgroup, akin to Uncertain Membership

» Finite Mixture Models, K-Means

» Clustering models can generally be divided into two main
categories:

1. : Construction of a
fully probabilistic model of the data, with the clustering
labels often thought of as latent varlables

> , Finite Mixture Models

2. Cost-Based clustering: Achieve clustering by minimizing a

cost function to get the optimal clustering labels
» Fuzzy C-Means, K-Means



Overview of Finite Mixture Models

Finite Mixture Model Finite Mixture Model

» Finite mixture models are probabilistic clustering models that
assume each observation comes from one of the K clusters

» The choice of the number of clusters (K) is user-specified



Overview of Mixed Membership Models

Mixed Membership Model

» Mixed membership models are a generalization of finite mixture
models, where membership is considered to be on a spectrum



Mixed Membership Models in Genetics

» Mixed Membership Models often are referred to as admizture
models in the genetics literature (Pritchard et al., 2000; Tang et
al., 2005; Alexander et al., 2009)
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Latent Dirichlet Allocation

» Topic Models, such as Latent Dirichlet Allocation (Blei et al.,
2003), aims to explain a collection of objects (referred to as
documents) through a set of unobserved subgroups (referred to
as topics)
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Other Mixed Membership Models

» Erosheva et al. (2004) used a mixed membership model to
classify scientific publications

» Heller et al. (2008) introduced a fully probabilistic mixed
membership framework for data that is assumed to have come
from the exponential family of distributions

» Applied their framework to classifying senators based off of
roll call data (binary voting records)




Example: Bivariate Normal (K=3 Features)

» The partial membership model framework proposed by Heller et
al. (2008) leads to unwieldy implied sampling models, even in
cases when we have more than 2 features in the mixed
membership model

(Heller et al., 2006) (Marco et al., 2022)
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Functional Mixed Membership Models



Motivation: EEG as a Functional Brain Imaging Modality

Electroencephalogram (EEG)

» EEG sensors measure distributed neuronal activity on cortical patches
perpendicular to the sensors

» We study the response of a population of neurons — [Learning,
memory formation, task execution, ...]



Resting State EEG and Spectral Features

» Power spectrum analysis associates spectral features in a specific
frequency range, with bio-behavioral characterizations of brain activity

» We focus on the alpha frequency range, whose patterns at rest are
thought to play a role in neural coordination and communication
between distributed brain regions



EEG Spectral Power (ASD + TD)
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Frequency

» Can we use spectral power dynamics to identify latent
neuro-developmental classes?

» Is the uncertain membership (clustering) framework appropriate for
this application?



Functional Data Analysis

» Functional Data Analysis (FDA) focuses on methods used to
analyze sample paths of an underlying continuous stochastic
process Y

» Typically we consider:
Yi(t) = filt)+et);  filt) ~ GP{u(®),C( )} e(t) ~ N(0,07)

Note: Often the literature on GP focuses on direct
(parametrized) modeling of the covariance function C(-,-)

Example: C(s,t) = a? exp{—0.5||s — t||?/¢*}

FDA: Estimation of C(s,t) from random samples
[Yi(t),...,Y,(t)]

» Established literature on flexible priors for C(:,-) [Yang et al.,
2017; Montagna et al., 2012; Shamshoian et al., 2022]



Functional Clustering (GP Mixtures)

» The FDA literature on clustering is very mature (James and
Sugar, 2003; Chiu and Li, 2007)

» From a Bayesian perspective, assuming there exist K latent GPs
o~ gp (u““),c(’f)) Ck=1,2,... K

Each sample paths f;, (i=1,2,..., N), follows a finite mixture of
GPs:

p(fo p4H, pE), GEHD ) — f:p(’“) GP (fi | u®,c®);
=il

where p(¥) € [0,1] is the mixing proportion quantifying uncertain
membership to the k& GP



Functional Clustering vs. Functional Mixed Membership

Mixed Membership Model Finite Mixture Model




Mixed Membership Functions

» Mixed membership process:

K
filzi=a)  Zinf®

k=1

» The proposed sampling model assumes

fi|® ~GP ZZikM(k)7 ZkaC(k) + Z Z Zi Zige C*F)
P k k k'Zk

» Model K Gaussian Processes (GPs), f(*)

» K mean functions, u(F)(t)

» K covariance functions, C(%:F)(s )

> w cross-covariance functions, C(k’j)(tk,tj)



Joint Representation of K Gaussian Processes

» We assume f*) can be represented by a set of uniformly
continuous basis functions.

» Let B(t) is a vector of the P basis functions evaluated at ¢

» The Multivariate Karhunen-Loéve theorem (Happ and Greven,
2018) jointly decomposes K GPs:

FO(t) = v B(1) +mem<) (1)

m=1

where v, € RP | ¢p, € RY | and x,,, ~ N(0,1)
» Using this decomposition, we have:
> u®(t) = v B()
> CED(tr, 1)) = 0Ly Do B(tr) 9 B(t))



Multivariate Karhunen-Loéve Theorem (cont.)

» The Karhunen-Loeéeve theorem typically allows for a reduced
dimensional representation with M < K P components, s.t.

FO) = B + Y Xm®hmB(E), (2)

m=1

» Number of parameters needed to model the covariance structure:

» Multivariate Karhunen-Loeve: O(KPM)
> Naive : O(K?2P?)



Finite Dimensional Margins

» Zx € (0,1) — mixed membership proportion of path i
belonging to GP (k)

» Using the multivariate KL construction, we obtain:

K M
(010 ~N [ 3 Zi | B + Y xim#nBW) | 0> | )
k=1 m=1
FR @)

» Integrating over y; yields

M
Yi(6)|©—y ~N (ZZM Ok, ZZZWZ”( t:) Y (Grm®)n) St )) +021m)

=1l =il m=1
©

1 (t;) CEA(t;, ;)



Prior Distributions

» The ¢ parameters construct scaled eigenfunctions of the
covariance operator

» Mutually orthogonal
» Magnitude of the scaled eigenfunctions should decrease

» Multiplicative gamma process shrinkage prior
(Bhattacharya and Dunson, 2011)

¢kpm|’7kpmv7—mk ~N (0 ’ykpm r;li)

m

Ykpm (V’y/2 V’y/2 ka - H 6nk7

ok ~I(awk, 1), 65k ~ T(agk, 1), ar ~T(a1,B1), agk ~T(az,B2)



Posterior Distributions

KP
> Lot By i= Loty (iph, ) and
W = {I/l,...,VK,EH,...,ElK,...,EKK,UQ}.

» The parameters in w € £ completely specify the mean and
covariance structure of our model. We will denote the true set of
parameters as wg

» Assumptions:

1. Yi,...,Y, are observed on a grid of R points (R > KP) in
the domain, {t1,...,tr}

2. The variables Z;;, are fixed and known (not-random)

3. 08>0

» Counsider the fully saturated model (M = KP). Under these
assumptions, the posterior distribution is weakly consistent at
wp € N
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Selecting the Number of Features
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Case Study: Peak Alpha Frequency (TD and ASD)

» Autism spectrum disorder (ASD) is a term
used to describe individuals with a
collection of social communication deficits
and restricted or repetitive sensory-motor
behaviors

» This case study contains
electroencephalogram (EEG) data for 39
typically developing (TD) children and 58
children with ASD between the ages of 2
and 12 years old

» We fit a 2 functional feature mixed
membership model on data from the T8
electrode



EEG Case Study Data
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Figure: EEG data from the T8 electrode for 20 individuals (ASD and
TD)



EEG Case Study Data (cont.)

Feature 1 Feature 2
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Figure: Posterior median and 95% credible (pointwise credible interval
in dark gray and simultaneous credible interval in light gray) of the
mean function for each latent functional feature.



EEG Case Study (cont.)
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» Children with an TD clinical diagnosis are highly likely to load
on the second functional feature, whereas children with ASD
exhibit a higher level of heterogeneity



EEG Case Study Data (Functional Clus
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Covariate Adjusted Mixed Membership Models



Motivation: Peak Alpha Frequency Shift with Aging

» As typically developing children grow, the alpha peak tends to
becomes more prominent and the PAF shifts to a higher
frequency (Rodriguez-Martinez et al., 2017; Scheffler et al., 2019)

11 8 9 10 11 12 13 14
(@]

months 30 == 60 == 90 == 120
(SchefHler et al., 2019)



Covariate Adjusted Clustering

» Mizture of FExperts models and Mizture of Regressions models are
two common covariate-dependent clustering models where the
mean components of the mixtures are dependent on the
covariates of interest

» Mixture of Experts models also assume that cluster
membership also depends on the covariates of interest
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Covariate Adjusted Clustering

» Gaussian finite mixture models (GFMM) can be expressed as
K K
fi | 75, 850, 00 ~ G (Z i, Z”ikc(k)>
k=1 k=1

» Similarly, we can extend the framework of GFMMs to arrive at
the Mixture of Regressions Model framework (5) and Mixture of
Experts framework (6):

fi1X,0 ~ P (i, man® (x:), i, 7 C®) (9)

P(fi|X,0)= Zszl Tie(Xi, o) GP (fi | p®(x;), C*®)) (6)

» The mean function, ;%) (x;), is often modeled through a
regression framework



Function-on-Scalar Regression

» Function-on-scalar regression is a common method in FDA which
allows the mean structure of the continuous stochastic process to
be covariate-dependent

» The covariates of interest are scalar or vector-valued, while

the response is functional

» The general form of function-on-scalar regression can be
expressed as follows:

R
Y(t)=put)+ Y X,B:(t) +e(t); teT, (7)
r=1

» The mean function (u(t)) and the functional coefficients (3, (¢))
are infinite dimensional parameters, making inference intractable
» We typically assume that the data lie in the span of a finite
set of basis functions (b1 (%), ...,b,(t))

» A-priori specified basis functions
» Data-driven basis functions (F-PCA)



Function-on-Scalar Regression, Mixture of Regressions, and CAFMM Models

» Function-on-scalar regression can be considered a
level analysis, where the covariates have the same effects on each
observation

» Gaussian mixture of regressions models can be considered a
level analysis, where covariates the covariate
effects on the mean structure depend on which cluster an
observation belongs to

K R K
fil X,©~gP (Z Tik <Mk + ZXirﬁkr> 7Z7Tikc(k))
r=1 k=1

k=1 =

» Covariate adjusted functional mixed membership (CAFMM)
models can be considered an level analysis, where each
observation has a different allocation vector

» Each underlying feature has a unique mean structure
(covariate-dependent) and covariance structure



Extension to CAFMM Models

» The functional mixed membership model can be expressed as

K
Xi|Z(1:n) =d Z Zyfy,

i=1

where
® < gp (M(k)70(k)> L k=1,2,....K

» This leads to the following likelihood:
fil®~GP > Zyp®, S~ ZZCP +>" N ZinZigy C*F)
k k k k/#k

» Leveraging the function-on-scalar framework, we can arrive at
the general form of the proposed CAFMM model

fi|®~GP (Zk Zik (/”L(k) + ) Dk ZikZik/C(k’k/)>



Example of a Covariate Adjusted Mean Structure




Finite Dimensional Marginal Distributions

» Let x; € RE be the vector of covariates for the i*" observation

» Using the multivariate KL construction and the assumption that
the features lie in the user-defined basis, we obtain the functional
model:

K
Y ()]0, X ~ N {Z ik (S/(tz) (v + )+ Z Nagp) ¢km)> ) 0217“}

k=1

» Integrating our the x;,, parameters, we have

K K K M
Yi(6)|©—y ~N (Z ZuS' () e+ )y DD T (s () > (Brm®um) sm) +021m)

=t k=1j=1 m=1
(8)

> € RP*E represents the covariate adjustment to the mean
structure of the k*" feature



Identifiability

» Let w be a set of parameters

» The parameters w are unidentifiable if there exists at least one
w* # w such that L(Y;(t;) | w,x;) = L(Y(t;) | w*,x;) for all
sets of observations {Y;(t;)}Y,

» Otherwise, the parameters w are called identifiable

» The label switching problem is a common source of
unidentifiability in finite mixture models.

» What conditions do we need on the parameters w and design
matrix X to ensure identifiability?



Identifiability

Lemma: Consider a two feature (K = 2) covariate adjusted model as
specified in Equation 39. The parameters vy, Nk, Zik,

27]\5:1 (PrmP)sr,), and o2 are identifiable up to a permutation of the
labels (i.e. label switching), for k, k' = 1,2, n=1,..., N, and
m=1,..., M, given the following assumptions:

1. X is full column rank with 1 not in the column space of X.

2. The separability condition holds on the allocation matrix (there
exists i1, %2 such that Z;y=1land Z; , = 1). Moreover, there
exists at least 2 observations with allocation parameters that lie
in the interior of the unit simplex

(i.e. z; € {zeR2 1S Zk=1,0< 2}, < 1})

3. The sample paths Y;(t;) are sampled such that n; > P, and
furthermore, there exists a sample path Y;(t;) such that
n; > 4M.



Revisiting the ASD Case Study

» Autism spectrum disorder (ASD) is a term
used to describe individuals with a
collection of social communication deficits
and restricted or repetitive sensory-motor
behaviors

» This case study contains
electroencephalogram (EEG) data for 39
typically developing (TD) children and 58
children with ASD between the ages of 2
and 12 years old

> We fit a 2 CAFMM model on data from the
T8 electrode with Age as the covariate of
interest




Function-on-Scalar Regression (Covariates: Age)

Raw Data Function-on-Scalar Regression
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Figure: (Left) Data colored by age at the time of recording. (Right)
Results from a function-on-scalar regression.



CAFMM Model (Covariates: Age)
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Figure: (Top Left) Mean of the first feature at various ages. (Top
Right) Mean of the second feature at various ages. (Bottom)
Estimated allocation features stratified by clinical diagnosis.



Function-on-Scalar Regression (Covariates: Age and Clinical Diagnosis)

Function-on-Scalar Regression (ASD) Function-on-Scalar Regression (TD)

Age (Months) Age (Months)

N

125
100
75
50
25

Relative Power

8
g
<
)
2
5
o)
o«

Figure: Results from a function-on-scalar regression with age and
clinvial diagnosis as the covariates of interest.



Feature 2 (ASD)
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CAFMM Model (Covariates: Age and Clinical Diagnosis)
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Figure: Estimated average developmental trajectory of alpha
oscillations stratified by diagnostic group.



Summary

» Interpretable sampling models allow us to easily interpret the
mean and covariance structure

» Multivariate KL constructions allow for efficient representation
and dimension reduction of multivariate GPs

» In our applications, results are robust to increasing
dimensionality (multi-channel analyses)

» Covariate adjusted functional mixture models can be thought of
as a generalization of function-on-scalar regression



Thank You!

R Packages

BayesFMMM Funct. Mixed Membership Models https://github.com/ndmarco/BayesFMMM

Manuscripts

o Marco N, Senturk D, Jeste S, Dickinson A and D. Telesca D (2022) Functional Mized
Membership Models. (arXiv:2206.12084).

o Marco N, Senturk D, Jeste S, Dickinson A and D. Telesca D (2022) Flezible Regularized
Estimation in High-Dimensional Mized Membership Models (arXiv:2212.06906)
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Construction of a Finite Mixture Model

Finite Mixture Model

» Let my, € {0,1} (3°, mir = 1) denote whether or not the ith
observation belongs to the k' cluster, by the law of total
probability we have:

> P |m=1)

k=1



Construction of a Finite Mixture Model

» Assuming that the distributions of the clusters are in the
exponential family, we have

P(Y; | 01.x) = prP(Yi | 6k)

» Using the latent variables m; = [m;1, ..., mix] (mix € {0,1} and
K
> k1 Tik = 1), we have

P (Y; | mi,0(1:)) ZPm H (Yi | 6k)™"

where P(my, = 1) = pi



Extension to Heller’s Characterization of Partial Membership Models

» Let z; = [Zi1,...,Zik]|, where Z;; € [0,1] and ), Z;; = 1,

represent the it" observation’s proportion of membership to the

Kt feature

» Using these latent variables, we arrive at the general form
proposed in Heller et al. (2008):

K

P(Y; | zi,a(l:K)) O(/ P(Zz)HP(Y; | 0k)Zq‘,k dZi
A i=1

» Assuming the distributions of the features are in the exponential
family (i.e. Y; | 6x ~ Expon(6g)), we have

Y; | 2i,01.x) ~ Expon (Z Zik0k>
%



Extension to Heller’s Characterization of Partial Membership Models

» Assuming that the features follow a Gaussian distribution, where
v and Cj, denote the corresponding mean and covariance
parameters of the k" feature, we have that

Yi | zi,va.x), Ca.x) ~ N (Hih;, Hy)

1
where h; = Z,{,{:l wikaTluk and H; = (ZkK:l m-kC,;l)




Extension to our Proposed Mixed Membership Model

» In a Gaussian finite mixture model, we have:
K
p (%ilpa:ry> V(1:k)5 Cli:k)) = Zp(ﬂ'i) HN(Xi|Vk7Ck)m’“
T =1
» If we condition on the membership parameters, we get:

K
Xilm Ny =a Y minfk,

i=1
where f;, ~ N (v, Ck)
» Thus we can rewrite the likelihood as:

K K
Xi\ﬂ'(l:N), V(1:K), C(l:K) ~N <Z Tk Vi, Z Wikck>

k=1 k=1



Extension to our Proposed Mixed Membership Model

» We can extend this to our partial membership model by
introducing variables z; = [Z;1, ..., Zik] (Zix € [0,1],
>k Zik = 1) such that:

K
xXilz.ny =a Y, Zikfr
i=1
» We can’t assume that the features (i) are independent

> Let CF*) = Cov(fy, fi) denote the cross-covariance between
the feature k and feature &’

» Letting C denote the collection of covariance and
cross-covariance matrices, we have

K K K
Xi|Z(1:n), Y(1:K),C ~ N (Z Zika7ZZi2ka I Z Z ZinZiyy CFF )>

k=1 k=1 k=1 k#k’



Relation to Other Mixed Membership Models

» The proposed representation is more flexible and interpretable
compared to other MMMs (i.e. Heller et al., 2008).



Visualizations of Clustering Models

Finite Mixture Models Feature Allocation Models Mixed Membership Models




Joint Decomposition

» Letting F = [fy,...,fx], we we have that

cay . clK)
Cov(vec(F)) =3 = : . :
cEy . CcEK)
» Letting ®,,, = [@1,, - - - k) be scaled eigenvectors of X, we

have

PK
CER =3 drmlm

m=1

» Thus we have that vec(F) ~ vec(p) + an\le Xm®m or
f. ~ v + Zf\f:l Xm®Pkm, where xm ~ N(0,1)



Model Specification

» Using the approximation, we obtain:

K M
yil® ~ N ZZik (Vk + Z Xim(bkm)aUzIP

k=1 m=1

F® )

» If we integrate out the y;,, variables, we obtain:

+o’Ip

K K K M
yi|®—X ~ N ZZikuk, Z Z Zﬂcsz’ <Z ¢km¢;c’m

k=1 k=1k'=1 m=1

N——

C(k’,k/)



Case Study: Molecular Subtypes of Breast Cancer

» In 2014, there were an estimated 534,000 deaths due to breast
cancer worldwide (Wang et al.,2016)

» In the past two decades, 5 molecular subtypes of breast cancer
have been discovered; each with a different prognosis, risk
factors, and treatment sensitivity (Prat et al., 2015)

» In 2009, Parker et al. discovered that the cancer subtype can be
accurately classified by centroid-based prediction methods using
gene expression data from 50 genes (PAM50)

» We fit a 3 feature mixed membership model on gene expression
data from PAMS50, using patients with LumA, Basal, and Her2
cancer subtypes
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Case Study: Molecular Subtypes of Breast Cancer
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Case Study: Molecular Subtypes of Breast Cancer

Figure: Visualization of the correlation structure of the each feature
(Feature 1: Left, Feature 2: Middle, Feature 3: Right)
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Simulation Study: Information Criteria
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Unidentifiability of Allocation Parameters

(a) non-identifiable (b) non-identifiable (c) identifiable (d) identifiable



Identifiability of Allocation Parameters

>

| 2

Seperability condition: at least one observation belongs entirely
in each feature

Sufficiently Scattered condition: an allocation matrix Z is
sufficiently scattered if:

1. cone(Z")* CK

2. cone(Z)*NbdC C {Xer, f=1,...,k, X >0}
where K := {x € R¥|||x[]s < x'1x},
bdK = {x € RE||[x|> = x'1x},
cone(Z')* := {x € RK|xZ’ > 0}, and ey is a vector with the '
element equal to 1 and zero elsewhere.



Effects of the Cross-Covariance Function

Cov XY (s, 1) = Cov (X (s), Y (¢))




EEG Case Study (cont.)

Figure: Posterior estimates of the covariance functions (From left to
right: covariance of feature 1, covariance of feature 2, cross-covariance
between features 1 and 2)



Analysis of Multi-Channel EEG Data

» In the previous case study, we only used
the T8 electrode and discarded the
information from the 24 other electrodes

» For this case study, we will model all
electrodes using a functional model,
assuming 7 C R3

» Two of the indices will contain the
spatial location of the electrodes

» The third index will contain the
frequency domain




Analysis of Multi-Channel EEG Data (cont.)

Feature 1 Feature 2
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Figure: Posterior estimates of the means of the two functional features
viewed at specific electrodes of interest



Analysis of Multi-Channel EEG Data (cont.)

Feature 1 Feature 2 Feature 1 Feature 2

A
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Figure: Variance of electrodes at 6 Hz (left) and 10 Hz (right)

» For the second functional feature, we can see that there is
high heterogeneity around the T8 electrode at 6 Hz



Conditional Predictive Ordinate (CPO)
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Sim Study (Covariate

Adjusted)

Truth / Model Parameter N =60 N =120 N =240
(# Covariates)
I 1.9% (0.3%, 24.7%) 1.1% (0.2%, 10.4%) 0.3%(0.1%, 8.8%)
o 1.5% (0.4%,14.5%) 1.0% (0.2%, 10.5%) 0.2% (0.1%, 10.9%)
2 ctn 156.1% (2.1%, 112219.4%) 110.3% (0.1%, 1806067.0%) 6.1% (0.1%, 362938.9%)
c@2 88.1% (1.8%, 60673.8%) 416.2% (1.9%, 1008651.0%) 4.9% (0.5%, 22725.8%)
c?) 431.2% (3.5%, 35924.4%) 433.7% (2.2%, 246646.3%) 22.3% (0.6%, 29231.3%)
z 0.047 (0.020, 0.099) 0.030 (0.013, 0.074) 0.013 (0.008, 0.054)
N =50 N =100 N =200
I 1.5% (0.2%, 7.6%) 0.8% (0.1%, 4.9%) 1.1%(0.2%,5.4%)
o 1.6% (0.3%,5.7%) 1.2% (0.2%, 7.6%) 1.2% (0.2%, 5.4%)
11 ctn 218.5% (26.0%, 11299.6%) 30.8% (14.4%, 308.4%) 37.1% (9.5%, 421.2%)
c@2 204.4% (22.5%, 2603.4%) 40.2% (8.3%, 597.6%) 25.5% (5.7%, 157.7%)
c2) 219.8% (42.9%, 1912.9%) 89.1% (21.2%, 403.0%) 60.6% (13.0%, 350.2%)
z 0.067 (0.047, 0.085) 0.056 (0.042, 0.081) 0.051 (0.040, 0.065)
I 382.2% (153.4%, 961.9%) 650.7% (91.1%, 1511.0%) 1076.7%(94.8%,2339.0%)
2 394.6% (117.5%,1292.3%) 751.4% (69.0%, 1721.0%) 885.1% (145.0%, 2313.0%)
10 COD 1581365.0% (81644.7%, 23059352.5%)  1328559.4% (64656.5%, 40230314.1%)  1348112.9% (98035.6%, 65828353.0%)
c@2) 730829.2% (133764.2%, 9829513.4%)  1015747.1% (86551.9%, 17361755.8%)  802590.5% (44704.4%, 21037857.8%)
c2) 1271237.9% (90303.1%, 9356418.4%)  1917180.3% (91394.3%, 20373022.9%) 1392890.2% (81254.1%, 19419032.6%)
Z 0.202 (0.180, 0.217) 0.172 (0.157, 0.184) 0.144 (0.121, 0.156)
N =140 N =380 N =160
I 2.3% (0.3%, 36. 2.5% (0.2%, 33.6%) 1.9%(0.2%,20.4%)
o 4.1% ( 1.9% (0. 1.6%) 3.8% (0.2%, 26.1%)
o/1 ctn 27.1% (7.7%, 703.6%) 19.1% (3.3%, 95.5%) 20.3% (3.1%, 64.9%)
c@2 28.9% (9.4%, 319.1%) 19.0% (3.7%, 206.9%) 13.5% (3.0%, 74.8%)
c2) 31.4% (8.8%, 353.3%) 24.2% (7.7%, 61.2%) 26.9% (4.9%, 67.1%)
Z 0.0957 (0.070, 0.148) 0.083 (0.061, 0.107) 0.068 (0.048, 0.088)
I 0.23% (0.04%, 1.23%) 0.12% (0.01%, 0.35%) 0.04%(0.01%,0.31%)
1o 0.27% (0.09%,0.88%) 0.12% (0.02%, 0.42%) 0.04% (0.01%, 0.31%)
0/0 can 5% (0.9%, 16.0%) 1.9% (0.3%, 7.4%) 1.3% (0.3%, 4.4%)
c@2 4.5% (0.6%, 18.0%) 1.6% (0.3%, 8.0%) 1.1% (0.2%, 4.5%)
c2) 5.3% (1.1%, 19.9%) 2.0% (0.6%, 9.5%) 1.3% (0.6%, 5.4%)
Z 0.032 (0.023, 0.049) 0.018 (0.013, 0.024) 0.011 (0.009, 0.015)
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