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Overview of Clustering

▶ Clustering analysis is an exploratory task that aims to assign
observations into homogeneous subgroups so that we can better
understand the data (Hennig et al., 2015)
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Overview of Clustering

▶ Clustering membership can generally be divided into two main
categories:

1. Soft/Fuzzy clustering : Each observation belong partially
to each subgroup, akin to Mixed Membership

▶ Mixed Membership Models, Fuzzy C-Means

2. Hard clustering : Each observation comes from a single (but
unknown) subgroup, akin to Uncertain Membership

▶ Finite Mixture Models, K-Means

▶ Clustering models can generally be divided into two main
categories:

1. Probabilistic/Model-Based clustering : Construction of a
fully probabilistic model of the data, with the clustering
labels often thought of as latent variables

▶ Mixed Membership Models, Finite Mixture Models

2. Cost-Based clustering : Achieve clustering by minimizing a
cost function to get the optimal clustering labels

▶ Fuzzy C-Means, K-Means



Overview of Finite Mixture Models
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Finite Mixture Model
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Finite Mixture Model

▶ Finite mixture models are probabilistic clustering models that
assume each observation comes from one of the K clusters

▶ The choice of the number of clusters (K) is user-specified



Overview of Mixed Membership Models
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Mixed Membership Model

▶ Mixed membership models are a generalization of finite mixture
models, where membership is considered to be on a spectrum



Mixed Membership Models in Genetics

▶ Mixed Membership Models often are referred to as admixture
models in the genetics literature (Pritchard et al., 2000; Tang et
al., 2005; Alexander et al., 2009)

(Pritchard et al., 2000)
(Horimoto et al., 2022)



Latent Dirichlet Allocation

▶ Topic Models, such as Latent Dirichlet Allocation (Blei et al.,
2003), aims to explain a collection of objects (referred to as
documents) through a set of unobserved subgroups (referred to
as topics)



Other Mixed Membership Models

▶ Erosheva et al. (2004) used a mixed membership model to
classify scientific publications

▶ Heller et al. (2008) introduced a fully probabilistic mixed
membership framework for data that is assumed to have come
from the exponential family of distributions

▶ Applied their framework to classifying senators based off of
roll call data (binary voting records)Statistical Models for Partial Membership
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Figure 6. Analysis of the partial membership results on the Senate roll call data from 2001-2002. The line shows amount
of membership in the “Democrat” cluster with the left of the line being the lowest and the right the highest.

Figure 8. Tower and Sunset images. The top row are the
images found to have largest membership in the “sunset”
cluster, the bottom row are images found to have largest
membership in the “tower” cluster, and the middle row are
the images which have the most even membership in both
clusters.

8. Conclusions and Future Work

In summary, we have described a fully probabilistic
approach to data modelling with partial membership
using continuous latent variables, which can be seen as
a relaxation of clustering with finite mixture models.
We employed a full Hybrid Monte Carlo algorithm for
inference, and our experience with HMC has been very
positive. Despite the general reputation of MCMC
methods for being slow, our model using HMC seems
to discover sensible partial membership structure after
surprisingly few samples.

In the future we would like to develop a nonparamet-
ric version of this model. The most obvious way to try
to generalize this model would be with a Hierarchi-
cal Dirichlet Process (Teh et al., 2006). However, this
would involve averaging over infinitely many poten-
tial clusters, which is both computationally infeasible,
and also undesirable from the point of view that each
data point should have non-zero partial membership

in only a few (certainly finite) number of clusters. A
more promising alternative is to use an Indian Bu↵et
Process (Gri�ths & Ghahramani, 2005), where each 1
in a row in an IBP sample matrix would represent a
cluster in which the data point corresponding to that
row has non-zero partial membership, and then draw
the continuous values for those partial memberships
conditioned on that IBP matrix.
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Example: Bivariate Normal (K=3 Features)

▶ The partial membership model framework proposed by Heller et
al. (2008) leads to unwieldy implied sampling models, even in
cases when we have more than 2 features in the mixed
membership model

(Heller et al., 2006) (Marco et al., 2022)
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Motivation: EEG as a Functional Brain Imaging Modality

▶ EEG sensors measure distributed neuronal activity on cortical patches
perpendicular to the sensors

▶ We study the response of a population of neurons – [Learning,
memory formation, task execution, ...]



Resting State EEG and Spectral Features

▶ Power spectrum analysis associates spectral features in a specific
frequency range, with bio-behavioral characterizations of brain activity

▶ We focus on the alpha frequency range, whose patterns at rest are
thought to play a role in neural coordination and communication
between distributed brain regions



EEG Spectral Power (ASD + TD)
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▶ Can we use spectral power dynamics to identify latent
neuro-developmental classes?

▶ Is the uncertain membership (clustering) framework appropriate for
this application?



Functional Data Analysis

▶ Functional Data Analysis (FDA) focuses on methods used to
analyze sample paths of an underlying continuous stochastic
process Y

▶ Typically we consider:

Yi(t) = fi(t)+ϵi(t); fi(t) ∼ GP{µ(t), C(·, ·)}; ϵi(t) ∼ N(0, σ2
ϵ )

Note: Often the literature on GP focuses on direct
(parametrized) modeling of the covariance function C(·, ·)

Example: C(s, t) = a2 exp{−0.5||s− t||2/ℓ2}

FDA: Estimation of C(s, t) from random samples
[Y1(t), . . . , Yn(t)]

▶ Established literature on flexible priors for C(·, ·) [Yang et al.,
2017; Montagna et al., 2012; Shamshoian et al., 2022]



Functional Clustering (GP Mixtures)

▶ The FDA literature on clustering is very mature (James and
Sugar, 2003; Chiu and Li, 2007)

▶ From a Bayesian perspective, assuming there exist K latent GPs

f (k) ∼ GP
(
µ(k), C(k)

)
, k = 1, 2, . . . ,K

Each sample paths fi, (i=1,2,. . . , N), follows a finite mixture of
GPs:

p
(
fi | ρ(1:K), µ(1:K), C(1:K)

)
=

K∑
k=1

ρ(k) GP
(
fi | µ(k), C(k)

)
;

where ρ(k) ∈ [0, 1] is the mixing proportion quantifying uncertain
membership to the kth GP



Functional Clustering vs. Functional Mixed Membership
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Mixed Membership Functions

▶ Mixed membership process:

fi | zi =d

K∑
k=1

Zikf
(k)

▶ The proposed sampling model assumes

fi | Θ ∼ GP

∑
k

Zikµ
(k),

∑
k

Z2
ikC

(k) +
∑
k

∑
k′ ̸=k

ZikZik′C(k,k′)


▶ Model K Gaussian Processes (GPs), f (k)

▶ K mean functions, µ(k)(t)
▶ K covariance functions, C(k,k)(s, t)
▶ K(K−1)

2 cross-covariance functions, C(k,j)(tk, tj)



Joint Representation of K Gaussian Processes

▶ We assume f (k) can be represented by a set of uniformly
continuous basis functions.

▶ Let B(t) is a vector of the P basis functions evaluated at t

▶ The Multivariate Karhunen-Loève theorem (Happ and Greven,
2018) jointly decomposes K GPs:

f (k)(t) = ν′
kB(t) +

KP∑
m=1

χmϕ′
kmB(t), (1)

where νk ∈ RP , ϕkm ∈ RP , and χm ∼ N (0, 1)

▶ Using this decomposition, we have:

▶ µ(k)(t) = ν′
kB(t)

▶ C(k,j)(tk, tj) =
∑KP

m=1 ϕ
′
kmB(tk)ϕ

′
jmB(tj)



Multivariate Karhunen-Loève Theorem (cont.)

▶ The Karhunen-Loève theorem typically allows for a reduced
dimensional representation with M ≤ KP components, s.t.

f (k)(t) ≈ ν′
kB(t) +

M∑
m=1

χmϕ′
kmB(t), (2)

▶ Number of parameters needed to model the covariance structure:

▶ Multivariate Karhunen-Loève: O(KPM)
▶ Näıve : O(K2P 2)



Finite Dimensional Margins

▶ Zik ∈ (0, 1) −→ mixed membership proportion of path i
belonging to GP (k)

▶ Using the multivariate KL construction, we obtain:

yi(t)|Θ ∼N

 K∑
k=1

Zik

ν′
kB(t) +

M∑
m=1

χimϕ′
kmB(t)︸ ︷︷ ︸

 , σ2

 (3)

f (k)(t)

▶ Integrating over χi yields

yi(ti)|Θ−χ ∼N

 K∑
k=1

Zik S
′(ti)νk︸ ︷︷ ︸,

K∑
k=1

K∑
j=1

ZikZij

S′(ti)
M∑

m=1

(
ϕkmϕ′

jm

)
S(ti)︸ ︷︷ ︸

+ σ2Ini


(4)

µ(k)(ti) C(k,j)(ti, ti)



Prior Distributions

▶ The ϕ parameters construct scaled eigenfunctions of the
covariance operator

▶ Mutually orthogonal
▶ Magnitude of the scaled eigenfunctions should decrease

▶ Multiplicative gamma process shrinkage prior
(Bhattacharya and Dunson, 2011)

ϕkpm|γkpm, τ̃mk ∼ N
(
0, γ−1

kpmτ̃−1
mk

)
,

γkpm ∼ Γ (νγ/2, νγ/2) , τ̃mk =

m∏
n=1

δnk,

δ1k ∼ Γ(a1k, 1), δjk ∼ Γ(a2k, 1), a1k ∼ Γ(α1, β1), a2k ∼ Γ(α2, β2)



Posterior Distributions

▶ Let Σjk :=
∑KP

p=1

(
ϕjpϕ

′
kp

)
and

ω :=
{
ν1, . . . ,νK ,Σ11, . . . ,Σ1K , . . . ,ΣKK , σ2

}
.

▶ The parameters in ω ∈ Ω completely specify the mean and
covariance structure of our model. We will denote the true set of
parameters as ω0

▶ Assumptions:

1. Y1, . . . ,Yn are observed on a grid of R points (R > KP ) in
the domain, {t1, . . . , tR}

2. The variables Zik are fixed and known (not-random)
3. σ2

0 > 0

▶ Consider the fully saturated model (M = KP). Under these
assumptions, the posterior distribution is weakly consistent at
ω0 ∈ Ω



Operating Characteristics on Engineered Data
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Selecting the Number of Features
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Case Study: Peak Alpha Frequency (TD and ASD)

▶ Autism spectrum disorder (ASD) is a term
used to describe individuals with a
collection of social communication deficits
and restricted or repetitive sensory-motor
behaviors

▶ This case study contains
electroencephalogram (EEG) data for 39
typically developing (TD) children and 58
children with ASD between the ages of 2
and 12 years old

▶ We fit a 2 functional feature mixed
membership model on data from the T8
electrode



EEG Case Study Data
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Figure: EEG data from the T8 electrode for 20 individuals (ASD and
TD)



EEG Case Study Data (cont.)
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Figure: Posterior median and 95% credible (pointwise credible interval
in dark gray and simultaneous credible interval in light gray) of the
mean function for each latent functional feature.



EEG Case Study (cont.)
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▶ Children with an TD clinical diagnosis are highly likely to load
on the second functional feature, whereas children with ASD
exhibit a higher level of heterogeneity



EEG Case Study Data (Functional Clustering)
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Motivation: Peak Alpha Frequency Shift with Aging

▶ As typically developing children grow, the alpha peak tends to
becomes more prominent and the PAF shifts to a higher
frequency (Rodŕıguez-Mart́ınez et al., 2017; Scheffler et al., 2019)

(Scheffler et al., 2019)



Covariate Adjusted Clustering

▶ Mixture of Experts models and Mixture of Regressions models are
two common covariate-dependent clustering models where the
mean components of the mixtures are dependent on the
covariates of interest

▶ Mixture of Experts models also assume that cluster
membership also depends on the covariates of interest

(Hyun et al., 2022)



Covariate Adjusted Clustering

▶ Gaussian finite mixture models (GFMM) can be expressed as

fi | πi, µ
(1:K), C(1:K) ∼ GP

(
K∑

k=1

πikµ
(k),

K∑
k=1

πikC
(k)

)

▶ Similarly, we can extend the framework of GFMMs to arrive at
the Mixture of Regressions Model framework (5) and Mixture of
Experts framework (6):

fi | X,Θ ∼ GP
(∑K

k=1 πikµ
(k)(xi),

∑K
k=1 πikC

(k)
)

(5)

P (fi | X,Θ) =
∑K

k=1 πik(xi,αk) GP
(
fi | µ(k)(xi), C

(k)
)

(6)

▶ The mean function, µ(k)(xi), is often modeled through a
regression framework



Function-on-Scalar Regression

▶ Function-on-scalar regression is a common method in FDA which
allows the mean structure of the continuous stochastic process to
be covariate-dependent

▶ The covariates of interest are scalar or vector-valued, while
the response is functional

▶ The general form of function-on-scalar regression can be
expressed as follows:

Y (t) = µ(t) +

R∑
r=1

Xrβr(t) + ϵ(t); t ∈ T , (7)

▶ The mean function (µ(t)) and the functional coefficients (βr(t))
are infinite dimensional parameters, making inference intractable

▶ We typically assume that the data lie in the span of a finite
set of basis functions (b1(t), . . . , bp(t))

▶ A-priori specified basis functions
▶ Data-driven basis functions (F-PCA)



Function-on-Scalar Regression, Mixture of Regressions, and CAFMM Models

▶ Function-on-scalar regression can be considered a population
level analysis, where the covariates have the same effects on each
observation

▶ Gaussian mixture of regressions models can be considered a
sub-population level analysis, where covariates the covariate
effects on the mean structure depend on which cluster an
observation belongs to

fi | X,Θ ∼ GP

(
K∑

k=1

πik

(
µk +

R∑
r=1

Xirβkr

)
,

K∑
k=1

πikC
(k)

)

▶ Covariate adjusted functional mixed membership (CAFMM)
models can be considered an individual level analysis, where each
observation has a different allocation vector

▶ Each underlying feature has a unique mean structure
(covariate-dependent) and covariance structure



Extension to CAFMM Models

▶ The functional mixed membership model can be expressed as

xi|z(1:N) =d

K∑
i=1

Zikfk,

where
f (k) ∼ GP

(
µ(k), C(k)

)
, k = 1, 2, . . . ,K

▶ This leads to the following likelihood:

fi | Θ ∼ GP

∑
k

Zikµ
(k),

∑
k

Z2
ikC

(k) +
∑
k

∑
k′ ̸=k

ZikZik′C(k,k′)


▶ Leveraging the function-on-scalar framework, we can arrive at

the general form of the proposed CAFMM model

fi | Θ ∼ GP
(∑

k Zik

(
µ(k) +Xirβrk

)
,
∑

k

∑
k′ ZikZik′C(k,k′)

)



Example of a Covariate Adjusted Mean Structure



Finite Dimensional Marginal Distributions

▶ Let xi ∈ RR be the vector of covariates for the ith observation

▶ Using the multivariate KL construction and the assumption that
the features lie in the user-defined basis, we obtain the functional
model:

Yi(ti)|Θ,X ∼ N

{
K∑

k=1

Zik

(
S′(ti) (νk + ηkx

′
i) +

M∑
m=1

χimS′(ti) (ϕkm)

)
, σ2Ini

}

▶ Integrating our the χim parameters, we have

yi(ti)|Θ−χ ∼N

 K∑
k=1

ZikS
′(ti) (νk + ηkx

′
i) ,

K∑
k=1

K∑
j=1

ZikZij

(
S′(ti)

M∑
m=1

(
ϕkmϕ′

jm

)
S(ti)

)
+ σ2Ini


(8)

▶ ηk ∈ RP×R represents the covariate adjustment to the mean
structure of the kth feature



Identifiability

▶ Let ω be a set of parameters

▶ The parameters ω are unidentifiable if there exists at least one
ω∗ ̸= ω such that L(Yi(ti) | ω,xi) = L(Yi(ti) | ω∗,xi) for all
sets of observations {Yi(ti)}Ni=1

▶ Otherwise, the parameters ω are called identifiable

▶ The label switching problem is a common source of
unidentifiability in finite mixture models.

▶ What conditions do we need on the parameters ω and design
matrix X to ensure identifiability?



Identifiability

Lemma: Consider a two feature (K = 2) covariate adjusted model as
specified in Equation 39. The parameters νk, ηk, Zik,∑M

m=1 (ϕkmϕ′
k′m), and σ2 are identifiable up to a permutation of the

labels (i.e. label switching), for k, k′ = 1, 2, n = 1, . . . , N , and
m = 1, . . . ,M , given the following assumptions:

1. X is full column rank with 1 not in the column space of X.

2. The separability condition holds on the allocation matrix (there
exists ĩ1, ĩ2 such that Zĩ11

= 1 and Zĩ22
= 1). Moreover, there

exists at least 2 observations with allocation parameters that lie
in the interior of the unit simplex(
i.e. zi ∈

{
z ∈ R2 |

∑2
k=1 Zk = 1, 0 < Zk < 1

})
.

3. The sample paths Yi(ti) are sampled such that ni ≥ P , and
furthermore, there exists a sample path Yi(ti) such that
ni > 4M .



Revisiting the ASD Case Study

▶ Autism spectrum disorder (ASD) is a term
used to describe individuals with a
collection of social communication deficits
and restricted or repetitive sensory-motor
behaviors

▶ This case study contains
electroencephalogram (EEG) data for 39
typically developing (TD) children and 58
children with ASD between the ages of 2
and 12 years old

▶ We fit a 2 CAFMM model on data from the
T8 electrode with Age as the covariate of
interest



Function-on-Scalar Regression (Covariates: Age)
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Figure: (Left) Data colored by age at the time of recording. (Right)
Results from a function-on-scalar regression.



CAFMM Model (Covariates: Age)
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Figure: (Top Left) Mean of the first feature at various ages. (Top
Right) Mean of the second feature at various ages. (Bottom)
Estimated allocation features stratified by clinical diagnosis.



Function-on-Scalar Regression (Covariates: Age and Clinical Diagnosis)
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Figure: Results from a function-on-scalar regression with age and
clinvial diagnosis as the covariates of interest.



CAFMM Model (Covariates: Age and Clinical Diagnosis)
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CAFMM Model (Covariates: Age and Clinical Diagnosis)
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Figure: Estimated average developmental trajectory of alpha
oscillations stratified by diagnostic group.



Summary

▶ Interpretable sampling models allow us to easily interpret the
mean and covariance structure

▶ Multivariate KL constructions allow for efficient representation
and dimension reduction of multivariate GPs

▶ In our applications, results are robust to increasing
dimensionality (multi-channel analyses)

▶ Covariate adjusted functional mixture models can be thought of
as a generalization of function-on-scalar regression



Thank You!

R Packages

BayesFMMM Funct. Mixed Membership Models https://github.com/ndmarco/BayesFMMM
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Estimation in High-Dimensional Mixed Membership Models (arXiv:2212.06906)
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Construction of a Finite Mixture Model
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Finite Mixture Model

▶ Let πik ∈ {0, 1} (
∑

k πik = 1) denote whether or not the ith

observation belongs to the kth cluster, by the law of total
probability we have:

P (Yi) = P (Yi | πi1 = 1)P (πi1 = 1) + · · ·+ P (Y | πiK = 1)P (πiK = 1)

=

K∑
k=1

ρkP (Yi | πik = 1)



Construction of a Finite Mixture Model

▶ Assuming that the distributions of the clusters are in the
exponential family, we have

P (Yi | θ1:K) = ρkP (Yi | θk)

▶ Using the latent variables πi = [πi1, . . . , πiK ] (πik ∈ {0, 1} and∑K
k=1 πik = 1), we have

P
(
Yi | πi,θ(1:K)

)
=
∑
πi

P (πi)

K∏
i=1

P (Yi | θk)πik ,

where P (πik = 1) = ρk



Extension to Heller’s Characterization of Partial Membership Models

▶ Let zi = [Zi1, . . . , ZiK ], where Zik ∈ [0, 1] and
∑

k Zik = 1,
represent the ith observation’s proportion of membership to the
Kth feature

▶ Using these latent variables, we arrive at the general form
proposed in Heller et al. (2008):

P
(
Yi | zi,θ(1:K)

)
∝
∫
zi

P (zi)

K∏
i=1

P (Yi | θk)Zik dzi

▶ Assuming the distributions of the features are in the exponential
family (i.e. Yi | θk ∼ Expon(θk)), we have

Yi | zi,θ(1:K) ∼ Expon

(∑
k

Zikθk

)



Extension to Heller’s Characterization of Partial Membership Models

▶ Assuming that the features follow a Gaussian distribution, where
νk and Ck denote the corresponding mean and covariance
parameters of the kth feature, we have that

Yi | zi,ν(1:K),C(1:K) ∼ N (Hihi,Hi) ,

where hi =
∑K

k=1 πikC
−1
k νk and Hi =

(∑K
k=1 πikC

−1
k

)−1
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Extension to our Proposed Mixed Membership Model

▶ In a Gaussian finite mixture model, we have:

p
(
xi|ρ(1:K),ν(1:K),C(1:K)

)
=
∑
πi

p(πi)

K∏
i=1

N (xi|νk,Ck)
πik

▶ If we condition on the membership parameters, we get:

xi|π(1:N) =d

K∑
i=1

πikfk,

where fk ∼ N (νk,Ck)

▶ Thus we can rewrite the likelihood as:

xi|π(1:N),ν(1:K),C(1:K) ∼ N

(
K∑

k=1

πikνk,

K∑
k=1

πikCk

)



Extension to our Proposed Mixed Membership Model

▶ We can extend this to our partial membership model by
introducing variables zi = [Zi1, . . . , ZiK ] (Zik ∈ [0, 1],∑

k Zik = 1) such that:

xi|z(1:N) =d

K∑
i=1

Zikfk

▶ We can’t assume that the features (fk) are independent

▶ Let C(k,k′) = Cov(fk, fk′) denote the cross-covariance between
the feature k and feature k′

▶ Letting C denote the collection of covariance and
cross-covariance matrices, we have

xi|z(1:N),ν(1:K),C ∼ N

 K∑
k=1

Zikνk,
K∑

k=1

Z2
ikCk +

K∑
k=1

∑
k ̸=k′

ZikZik′C(k,k′)





Relation to Other Mixed Membership Models
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▶ The proposed representation is more flexible and interpretable
compared to other MMMs (i.e. Heller et al., 2008).



Visualizations of Clustering Models



Joint Decomposition

▶ Letting F = [f1, . . . , fK ] , we we have that

Cov(vec(F)) = Σ =

C
(1,1) . . . C(1,K)

...
. . .

...
C(K,1) . . . C(K,K)


▶ Letting Φm = [ϕ′

1m . . .ϕ′
Km]′ be scaled eigenvectors of Σ, we

have

C(k,k′) =

PK∑
m=1

ϕkmϕ′
k′m

▶ Thus we have that vec(F) ≈ vec(µ) +
∑M

m=1 χmΦm or

fk ≈ νk +
∑M

m=1 χmϕkm, where χm ∼ N (0, 1)



Model Specification

▶ Using the approximation, we obtain:

yi|Θ ∼ N

 K∑
k=1

Zik

(
νk +

M∑
m=1

χimϕkm

)
︸ ︷︷ ︸, σ

2IP


f (k)(t)

▶ If we integrate out the χim variables, we obtain:

yi|Θ−χ ∼ N

 K∑
k=1

Zikνk,

 K∑
k=1

K∑
k′=1

ZikZik′

(
M∑

m=1

ϕkmϕ′
k′m

)
︸ ︷︷ ︸

+ σ2IP


C(k,k′)



Case Study: Molecular Subtypes of Breast Cancer

▶ In 2014, there were an estimated 534,000 deaths due to breast
cancer worldwide (Wang et al.,2016)

▶ In the past two decades, 5 molecular subtypes of breast cancer
have been discovered; each with a different prognosis, risk
factors, and treatment sensitivity (Prat et al., 2015)

▶ In 2009, Parker et al. discovered that the cancer subtype can be
accurately classified by centroid-based prediction methods using
gene expression data from 50 genes (PAM50)

▶ We fit a 3 feature mixed membership model on gene expression
data from PAM50, using patients with LumA, Basal, and Her2
cancer subtypes



Case Study: Molecular Subtypes of Breast Cancer
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Case Study: Molecular Subtypes of Breast Cancer
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Case Study: Molecular Subtypes of Breast Cancer

C
C

N
B

1

C
D

C
20

CDH3

CENPF

ESR1

FG
FR

4

F
O

X
A

1

FO
XC

1

KIF2C
KRT5

MIA

M
M

P11

S
F

R
P

1

C
C

N
E

1

AC
TR

3B

KRT14

ERBB2

K
R

T
17

C
D

C
A1

FOXA1

KRT5

M
M

P
11

ER
BB

2

CENPF

C
XXC

5

G
R

B7

TMEM45B

Figure: Visualization of the correlation structure of the each feature
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Simulation Study: Recovery of Parameters
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Simulation Study: Information Criteria
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Unidentifiability of Allocation Parameters



Identifiability of Allocation Parameters

▶ Seperability condition: at least one observation belongs entirely
in each feature

▶ Sufficiently Scattered condition: an allocation matrix Z is
sufficiently scattered if:

1. cone(Z′)∗ ⊆ K
2. cone(Z′)∗ ∩ bdK ⊆ {λef , f = 1, . . . , k, λ ≥ 0}

where K :=
{
x ∈ RK |∥x∥2 ≤ x′1K

}
,

bdK :=
{
x ∈ RK |∥x∥2 = x′1K

}
,

cone(Z′)∗ :=
{
x ∈ RK |xZ′ ≥ 0

}
, and ef is a vector with the ith

element equal to 1 and zero elsewhere.



Effects of the Cross-Covariance Function

Cov(X,Y )(s, t) = Cov (X(s), Y (t))



EEG Case Study (cont.)

Figure: Posterior estimates of the covariance functions (From left to
right: covariance of feature 1, covariance of feature 2, cross-covariance
between features 1 and 2)



Analysis of Multi-Channel EEG Data

▶ In the previous case study, we only used
the T8 electrode and discarded the
information from the 24 other electrodes

▶ For this case study, we will model all
electrodes using a functional model,
assuming T ⊂ R3

▶ Two of the indices will contain the
spatial location of the electrodes

▶ The third index will contain the
frequency domain



Analysis of Multi-Channel EEG Data (cont.)
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Figure: Posterior estimates of the means of the two functional features
viewed at specific electrodes of interest



Analysis of Multi-Channel EEG Data (cont.)

Figure: Variance of electrodes at 6 Hz (left) and 10 Hz (right)

▶ For the second functional feature, we can see that there is
high heterogeneity around the T8 electrode at 6 Hz



Conditional Predictive Ordinate (CPO)

30

40

50

60

70

40 50 60 70

M1    log(CPO)

M
0
  

  
lo

g
(C

P
O
)

Clinical Group

ASD

TD

40

50

60

70

40 50 60 70

M2    log(CPO)
M

1
  

  
lo

g
(C

P
O
)

Clinical Group

ASD

TD



Sim Study (Covariate Adjusted)

Truth / Model
(# Covariates)

Parameter N = 60 N = 120 N = 240

2/2

µ1 1.9% (0.3%, 24.7%) 1.1% (0.2%, 10.4%) 0.3%(0.1%, 8.8%)
µ2 1.5% (0.4%,14.5%) 1.0% (0.2%, 10.5%) 0.2% (0.1%, 10.9%)

C(1,1) 156.1% (2.1%, 112219.4%) 110.3% (0.1%, 1806067.0%) 6.1% (0.1%, 362938.9%)

C(2,2) 88.1% (1.8%, 60673.8%) 416.2% (1.9%, 1008651.0%) 4.9% (0.5%, 22725.8%)

C(1,2) 431.2% (3.5%, 35924.4%) 433.7% (2.2%, 246646.3%) 22.3% (0.6%, 29231.3%)
Z 0.047 (0.020, 0.099) 0.030 (0.013, 0.074) 0.013 (0.008, 0.054)

N = 50 N = 100 N = 200

1/1

µ1 1.5% (0.2%, 7.6%) 0.8% (0.1%, 4.9%) 1.1%(0.2%,5.4%)
µ2 1.6% (0.3%,5.7%) 1.2% (0.2%, 7.6%) 1.2% (0.2%, 5.4%)

C(1,1) 218.5% (26.0%, 11299.6%) 30.8% (14.4%, 308.4%) 37.1% (9.5%, 421.2%)

C(2,2) 204.4% (22.5%, 2603.4%) 40.2% (8.3%, 597.6%) 25.5% (5.7%, 157.7%)

C(1,2) 219.8% (42.9%, 1912.9%) 89.1% (21.2%, 403.0%) 60.6% (13.0%, 350.2%)
Z 0.067 (0.047, 0.085) 0.056 (0.042, 0.081) 0.051 (0.040, 0.065)

1/0

µ1 382.2% (153.4%, 961.9%) 650.7% (91.1%, 1511.0%) 1076.7%(94.8%,2339.0%)
µ2 394.6% (117.5%,1292.3%) 751.4% (69.0%, 1721.0%) 885.1% (145.0%, 2313.0%)

C(1,1) 1581365.0% (81644.7%, 23059352.5%) 1328559.4% (64656.5%, 40230314.1%) 1348112.9% (98035.6%, 65828353.0%)

C(2,2) 730829.2% (133764.2%, 9829513.4%) 1015747.1% (86551.9%, 17361755.8%) 802590.5% (44704.4%, 21037857.8%)

C(1,2) 1271237.9% (90303.1%, 9356418.4%) 1917180.3% (91394.3%, 20373022.9%) 1392890.2% (81254.1%, 19419032.6%)
Z 0.202 (0.180, 0.217) 0.172 (0.157, 0.184) 0.144 (0.121, 0.156)

N = 40 N = 80 N = 160

0/1

µ1 2.3% (0.3%, 36.7%) 2.5% (0.2%, 33.6%) 1.9%(0.2%,20.4%)
µ2 4.1% (0.3%,36.1%) 1.9% (0.3%, 21.6%) 3.8% (0.2%, 26.1%)

C(1,1) 27.1% (7.7%, 703.6%) 19.1% (3.3%, 95.5%) 20.3% (3.1%, 64.9%)

C(2,2) 28.9% (9.4%, 319.1%) 19.0% (3.7%, 206.9%) 13.5% (3.0%, 74.8%)

C(1,2) 31.4% (8.8%, 353.3%) 24.2% (7.7%, 61.2%) 26.9% (4.9%, 67.1%)
Z 0.0957 (0.070, 0.148) 0.083 (0.061, 0.107) 0.068 (0.048, 0.088)

0/0

µ1 0.23% (0.04%, 1.23%) 0.12% (0.01%, 0.35%) 0.04%(0.01%,0.31%)
µ2 0.27% (0.09%,0.88%) 0.12% (0.02%, 0.42%) 0.04% (0.01%, 0.31%)

C(1,1) 3.5% (0.9%, 16.0%) 1.9% (0.3%, 7.4%) 1.3% (0.3%, 4.4%)

C(2,2) 4.5% (0.6%, 18.0%) 1.6% (0.3%, 8.0%) 1.1% (0.2%, 4.5%)

C(1,2) 5.3% (1.1%, 19.9%) 2.0% (0.6%, 9.5%) 1.3% (0.6%, 5.4%)
Z 0.032 (0.023, 0.049) 0.018 (0.013, 0.024) 0.011 (0.009, 0.015)
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