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1 Linear Algebra

1.1 Vectorspaces

Definition 1 A vectorspace satisfies the following:
1. X4+Y ={z; +y} eR"
2.0eR"

3. a e R" = axz € R” for any x € R
R is called a field.

Definition 2 Consider VC R™. V is a subspace if it satisfies the following:
1. 'V is non-empty
2.X,YeV = X+YeV

3. XeVaeR = aXeV

From this definition, we can see that the vector space also has the following properties:
l.zeV = (-l)z=—2z€V
2. x4+ (—x2)=0€V

If S and T are subspaces of V, then SNT = {z € S and z € T|z € V} is a subspace, and
S+T={z+ylxeS,yeT}is also a subspace.

Definition 3 A sum is a direct sum if w € ST = u+ v for a unique u € S and v € T.

Consider S = {(x,0,0)|]z € R} and T" = {(0,y,0)ly € R}. Thus we can see that for any
we€ S+T={(z,y,0)|x,y € R}, we have a unique representation in terms of w = u + v, where
u € S and v € T. Therefore, S+ T is a direct sum (SEPT).

Theorem 1 Let S and T be subspaces of V. S+ T is direct iff 0=u+v = u=v=0

Proof: (=) Suppose SE@ T. Notice that 0 = u+ v = 0+ 0 where u € S and v € T. Since
direct sums are unique, this means that u = v = 0.

(<= )Suppose 0 =u+v = u=v=0. Let we S+ T. Thus, by definition, w = uj + v1
for some u; € S and v1 € T. Suppose w = ug + v9 for some ug € S and vy € T. Thus, we have

O=w—w=(up —uz) + (v —v3) = (u1 —u2) =(v1 —v2) =0

by the hypothesis. Therefore, we have that u; = uo and v; = vy. Therefore, there is a unique
representation, and S + T is a direct sum. (]

Lemma 1 ST iff SNT = {0}.



1 Linear Algebra

Proof: (=) Suppose SNT = {0,a} for some a # 0. Since SN 7T is a subspace, we know
that —a € SNT. Therefore, 0 = a — a. Thus we have a contradiction from the theorem above.
(<= ) Suppose SNT = {0}. Let 0 = u + v for some u € S and v € T. Thus we can see that
u=—v. Sinceu €S, —u=veT,soveSNT. Thus since SNT = {0}, u = 0 and therefore
v = 0. Thus we can see that 0 = u+v = u = v = 0. Therefore, by the theorem above, S+ T
is direct. O

Definition 4 Let V = {vy,...,v,}. V is a linearly independent set if ajv1 + agva + - -+ +
anvy, =0 = a1 =---=ay, =0. Otherwise V is a linearly dependent set.

Lemma 2 If V = {vy,...,v,} is a linearly dependent set with vy # 0, then 35 € {2,...,n}
such that:

1. vj € span{vy,...,vj_1}

2. span(V '\ {v;}) = span(V)

Proof: Suppose {v1,...,v,} is a set of linearly dependent variables. Let v; # 0. Therefore,
we have
a1v1 + agva + - - -+ apvy, =0

There exists a a; # 0 for 2 < j < n. Choose the largest j such that a; # 0. Thus a;v, =
—ajv; — -+ — aj—1vj—1. Therefore, by definition, a; € span({vi,...,vj—1}). Thus we have
proved (1).

Let A= {v1,...,vn}. Let A = A\ {v;} where v; € span({v1,...,v;_1}). Thus we have to prove
that span(A) = span(A). It is obvious that span(A) C span(A). Thus, we have to prove that
span(A) C span(A). Suppose that x € span(A). Thus

T =a1v1 + -+ apvy
Since v; € span({v1,...,vj—1}), we know that v; = civ1 +...¢j_1vj_1.
T=a1v1+ -+ a;-1vj—1 + ajv; + -+ apvy
T =avr + - +aj_1vj-1 +aj(cvr + o+ ¢jm1vj—1) + o+ anvp
z = (a1 + ajc1)v1 + (a2 + ajcz)v2 + -+ (aj—l + ajCj—1)Uj—1 + aj41Vj41 + -+ anvn

Therefore, we can see that = € span(A). Therefore we can see that span(A) C span(A). There-

fore we have that span(A) = span(A) (2). O

Lemma 3 The linear dependence lemma uses the lemma above to find a linearly inde-
pendent set of vectors. We can start by searching through the set of wvectors to look for a

vj € span{vi,...,vj_1}. If we find one, then we can remove it from the set without changing
the span of this set. We can continue in this iterative fashion until we do not find a v; such
that v; € span{vi,...,vj_1}. Once this happens, we have a linearly independent set.

Using the linear dependence lemma, we can explore the connection between linearly independent
sets and spanning sets. We will prove that spanning sets must have at least as many elements
as a linearly independent set.

Let V be a subspace. Let U = {uy,...,u;} be a linearly independent sets such that U C V.
Let W = {wi,...,w,} be a spanning set such that span(W) = V.

Suppose that m > n.



1.1 Vectorspaces

Let Ag = W. Thus we can see that span(Ag) = V. Let A; = {u1}UAy. Since {u1} € span(Aop),

by the linear dependence lemma, we can find a w;; € {wi,...,w,} such that span(B)
span(Ai) =V, where By = A; \ wj1.
Let Ay = {ug} U By = {ug, w1, w1, ..., Wj—1,Wj41,...,Wy}. Since ug € span(B1) =V, we can

find a wjs € {wi,...,wj—1,wj+1,...,w,} such that span(B2) = span(A2) = span(B1) =V
where BQ = A2 \wjg.

We can continue in this fashion until we have A, = {u,} U B,—1 = {uy,...,u1,w;} for some
w; € W. Since span(Bp—1) =V, u,, € spanV, and since u,, L u; for all i # n, we can see that
span(By) = span(A;,) =V, where B,, = {up, ..., u1}.

Consider uy,41 € V. Therefore, u, 1 € span({un,...,u1}). Therefore, up+1 = ajus + ... apvy,.
Therefore ajuj+- - -+ apvy—up+1 = 0, so by definition, {u, ..., u,} is not a linearly independent
set (which is a contradiction). Therefore, we can see that spanning sets must have at least as
many elements as a linearly independent set.

Definition 5 A basis is a linearly independent spanning set

Thus, from the definition we can see that every basis must contain the same number of elements.
Let By = {ui,...,un} and By = {vi,...,v,} both be bases for V. Since B; is a linearly
independent set and Bj is a spanning set, we have m < n. Since B» is a linearly independent
set and B is a spanning set, we have n < m. Therefore, we have m = n.

Definition 6 The dimension of a subspace is the number of vectors in a basis for that sub-
space.

Let V1 be a subspace of V', where dim(V) = n. Let By = {u,...,un} be a basis for V;. We
can extend Bj to a basis for V. All we have to do is find a v; € V such that v & span(V7).
Therefore, {u1,...,un,v1} is a linearly independent set. If n = m + 1, then {uy, ..., upm,v1} is
a basis for V. If not we can continue in this fashion until we have a basis for V. If V. C R", we
can append the vectors {ey,...,en} to {u1,...,un}, where ¢; is a vector of zeros except for the
it" element which is 1. We can use the linear dependence lemma to find a linearly independent
subset. The resulting set will be a basis for V.

Lemma 4 Let V be a vector space and let S and T' be subspaces of V. Thus we have dim(S +
T) = dim(S) + dim(T) — dim(SNT).

Proof: Let {uy,...,u,} be a basis for SNT. Extend the basis so that {u1,...,u, wi,..., Wy}

is a basis for S and {u1,...,u,,v1,...,v,} is a basis for T'. Therefore we have dim(S) =m +r
and dim(T) =n+r.
We need to prove that {ui,...u,,wi,...,Wn,v1,...v,} is a basis for S + 7. By construc-

tion we can see that it is a linearly independent set. Thus have to prove that it spans
S+ T. Let x € S+ T. Thus by definition, z = w 4+ v for some w € § and v € T. Since
w € span({ui, ..., up,w1,...,wy}) and v € span({u,...,ur,v1,...,v,}), we have that = €
span({ug, ... Up, W1, ..., Wn,v1,...0,}). Therefore, {uy,...ur, wi,..., Wn,v1,...0,} is a basis
for S+T and m+n+r = dim(S+T) = dim(S)+dim(T)—dim(SNT) = m+r+n+r—r = m+n+r
O

Definition 7 Two vector spaces Vi and Vo over the same field F are isomorphic if there is a
map Y from Vi to Vo such that:

1. (x) is linear, meaning that Y(z +y) = Y(x) +¥(y) and Y(azx) = ayp(z) for all z,y € V}
and o € F
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2. (x) is a one-to-one and onto function

The map (x) is called an isomorphism.

Theorem 2 Two vector spaces Vi and Vy over the same field F are isomorphic if and only if
they have the same dimension.

Proof: (<=) Let {x1,...,2,} be a basis for V; and {y1,...,yn} be a basis for V5. Consider
z € Vi. Thus x = a1z1 + ... apxy, for a unique set of aq,...,a,. Define the map

(@) =aryr + -+ anyn

Clearly, we can see that ¢(z) : Vi — Va. We can also see that ¢(x) is linear. Since each element
in V4 can we expressed in such a way (with unique a1, ...,a,), we can see that ¢ (x) is a both
one-to-one and onto function.

( = ) Now suppose that V; and V5, are isomorphic. Let ¢ : V3 — V5 be an isomorphism. Let
{z1,...,2,} be a basis for V.

Claim: {¢(x1),...,%(zy)} is a linearly independent set.

Note that ¢(z) =0 <= =z = 0 (If not, suppose ¥(z) = y. Then ¢(x 4+ 0) = (x) +¥(0) # y
which contradicts that () is linear.) Therefore, we have:

= 0a1p(r1) + ... antp(wn) = Yoo + - + anxn)

Thus we have,
a1+ tapr, =0 = agp=--=a,=0

Therefore we can see that {¢(z1),...,%(xy,)} is a linearly independent set. Therefore we know
that dim(Va) > dim(V1).
We can do the same by defining an isomorphism, ¢y : Vo — Vj. Thus we will get dim(V;) <
dim(Va). Therefore dim(Vy) = dim(V3).

O

Consider R" and P" = {p(x) = ap + a12® + - - - + ap_12" a; € R}. R™ and P" are an example
of two vector spaces that are isomorphic.

1.2 Inner Product Spaces

Definition 8 An inner product, (.,.) : V x V — F satisfies the following:
1. (x,x) > 0V
2. (z,2) =0 <= =0

3. Bilinear: (ax + By, 2) = a{z, 2) + Bly, 2) and (2, az + By) = a{z 2} + Blz,y) where 7 is
the complex conjugate of .

4. (z,y) = (y, x)

Thus we can say that (z,y) = > yiz; = y*x where y* is the adjoint of y (defined later). For
z,y € R, y*x =z = 2y.

Definition 9 The norm (length) of a vector is \/{(z,x) = ||z|| = Vx*x.

We can introduce the notion of an angle between two vectors in a vector space.

(2,y) = 2y = |[z]||lyllcos(6) = cos(6) = ﬁfﬁf@ﬂ
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Definition 10 We call two vectors X and Y orthogonal (X LY ) iff (z,y) =0
Thus we can see that two vectors are orthogonal if cos(6) =0 or 8 = 7/2.

Theorem 3 (Cauchy- Schwarz) Let u and v be any two vectors in a vector space V. Then

[ {w, )| < Jul[]o]|

Proof: Consider ||lu —

<"’U2>v\|2. By axioms of norms, we know that |lu — <u’”2>v|\2 > 0. Thus
IEll Il

we have < > < > < >
U, V) 9 U, U u, v
o= el = = e~ e
wo) () (u)
= (o) =20 R R e
(wo)?  (u,0)?
a2 — 280
oz T Tl
2
2 <U,2}>
= HU’H - HUHQ
Since ||.|| > 0 (axiom of norms), we have
2
ul? = 422 5

Thus we have
ul Pl[vl]? > (u,0)* = |[ulll[v]] > [(u,v)|

since ||ul|| and ||v|| are non-negative O

Consider the statistical model
y=pz

where [ is a scalar. We know that
lly — Ba||* >0

by the axiom of norms. Consider the estimated S, . Thus we have
ly — Bz|* = |ly = Bz + b — Bz|]* = ||y — Ba||* + 2(y — B, Bz — Bx) + (5 - B)||=|?
Thus, we can se that
lly = Bl = [ly — Ba||* = 2(y — Bz, Bz — Bz) — (B - B)||«||”
If set B such that (y — Bw, ﬁx — pz) = 0, then we have that

lly = Ba|* = |ly — Bll> = 2(y = (B = B)l|z|> = |ly — Bzl < |ly - p=|* V8

(y— Bz, bz —Bz) =0 = (B—B)(y,x) = (8 — B)Bl|=|]”
Thus we can see that ff = ﬁ@;ﬁ’; is the optimal solution such that the residuals are minimized

(Ily — Bz||> < |ly — Bz||* ¥B).

Lemma 5 An orthonormal set is also a linearly independent set.
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Proof: Let {uq,...,u,} be an orthonormal set. Therefore u; L u; for all i # j. Let aju; +
<-4+ apu, = 0. Consider

(Ui, arug + -+ - + ann) = (u;,0) =0
Since u; L u; for all 7 # j, we have
(ui aruy + - + aptn) = (Ui, au;) =0

Therefore, since u; # 0, we know that a; = 0. Since this holds for 1 < i < n, we can see that
ay; = -+ = ay = 0. Therefore, by definition, {u,...,u,} is an linearly independent set. O

Lemma 6 IfV L {uy,...,un}, then VL span({ui,...,un}).

Proof: Let u € span({u1,...,un}). Thus, u=aju; + - + anim.
<U7u> = al(”a“l) +e am<v7um> = (11(0) +oeeet am(o)
Thus V' L u. Therefore, V' L span({u1,...,um}). O

Let {u1,...,un} be an orthonormal set. Let € span({u1,...,un}). Let x = cus +- - -+ cpup.
we can see that (u;,z) = (u;, crur + -+ + cpup) = (U4, ¢, u;) = ¢;. Therefore we can rewrite x
as

x = (z,up)us + - + (T, Up) U,

Thus
(x,x) = ((zyur)ug + -+ 4 (@, U ) U, (T, u1) U1 + - -+ (T, Uy )Un)

=, Z<x,ui)(x,uj)<ui,uj>
= Z(x,u»(m, wi) (ui, wi) = Z<x7“i>2

Now we can look into the property of vectors orthogonal to a subspace. Let x € V. Let
{ui,...,um} €V be an orthonormal set. Let u = (z, uj)us+- -+ (2, U ) U, (note this is known
as the projection (defined later) of = onto span({u1,...,un})). Clearly u € span({ui, ..., umn}).
Let v=a2 —u.

(u,wi) = ({@yun)ur + -+ (@ ) um, wg) = Y § = 1™, uy) (g, wi) = (@, u3)
(v, ;) = (T — u, u5) = (@, w;) — (U, w;) = (@, u;) — (@, u;) =0
Therefore we can see that v L span({u1,...,u,}). We say that v € U+. Is U+ a subspace?
1. Notice that (0,u) =0, s0 0 € U™.

2. Let x,y € U*. Therefore, (z,u) = 0 and (y,u) = 0. Therefore by the linearity of inner
products, (z +y,u) =0,s0 x +y € U+,

3. Let a € F. Therefore, (ax,u) = afr,u) = a(0) = 0. Therefore ax € U+,

Therefore, we can see that U~ is a subspace.
Let {v1,...,v,} be a basis for V. Can we find an orthonormal basis for V?

Theorem 4 (Gram-Schmidt) Let {vy,...,v,} be a basis for V.

—_un L Wi A L YT TAY ]
Define u = o7 % = To] where w; = v; Zj:1<vl,uj>uj for2 <i<n.
Then {u1,...,un} is an orthonormal basis for V.

10
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Proof: We need to show

1. {u1,...,u,} is an orthonormal set

2. span({vi,...,vn}) = span({ui, ..., up})

e can immediately see that ||u;|| = 1, so we are left to prove that w; L w; for i # j.
1) We can immediately see that 1 left t that u; L u; for i # j
Consider

(ur,wa) = (u1,v2 — (v2,ur)ur) = (u1,v2) — (vg,ur){ug,u;) =0

Therefore, we can see that w1 L wo — w1 L us.
Now suppose that u;—1 L {u1,...,u;—2}. Thus we need to prove that w; L {ui,...,u;—1}. Let
I1<j<i-—1

i—1
(Wi ug) = (v = (i wk)ug, ) = (vi,ug) = (v, u5) (ug, u5) = (Vi ug) = (vi,ug) =0
k=1
Thus we can see that w; L {u1,...,u;—1} = wu; L {u1,...,uj—1}. Therefore, we can see that
{u1,...,u,} is an orthonormal set
(2) We can see that vy = r11u; where r1; = ||uq]|.
Continuing in this fashion, we have vo = ri9uj + roous where r192 = (ve,u1) and rog = [|waa]|.
For the it step, we have v; = r;u; + Z;;ll rj;uj where 7j; = (v;, u;) and r; = [|w;;||. Therefore,
we have v; € span({u1,...,u;}).
Therefore, we have span({vi,...,v,}) = span({ui, ..., un}). O

Lemma 7 Using the Gram-Schmidt process, we can derive the QR Decomposition X = QR

where Q) is an orthogonal matriz and R is an upper triangular matriz. Let X = [v1,...,vp] €
R™™ and Q = [uy, ..., un| € R"™™. Thus we have
1T T2 ... T1m
0 T ... Tom
X =[ug,. .., Up)
0 0 ... Twmm
Let U = {u1,...,ux} €V be an orthonormal set. We can extend this orthonormal set to an

orthonormal basis for V| by the following:
1. extend U to a basis for V
2. Apply Gram-Schmidt to the expanded basis

Let V' be a vector space with dim(V) = n. Let S C V be a subspace of V. Let {u,...,un}
be an orthonormal basis of S. We can extend the basis of S to a basis of V' such that
{u1, ..., Um,Vm+1,.-.,0,} is an orthonormal basis of V.

Lemma 8 {v,,11,...,0,} forms an orthonormal basis for S*.
Proof: Let v € S* C V. Thus we have
UV =Clu1 + -+ CnlUm + Cmt1Um+1 + - + CpUp
Since v L {uy,...,un}, we know that 0 = (v,u;) = ¢; for 1 <i < m. Therefore, we have

U= Cm+1Um+1 + -+ Cplp

11
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Therefore, we can see that v € span({vm+1,...,vn}). Therefore St C span({vimi1,--.,vn})
Now suppose that v € span({vm+1,...,vn}). Thus, by definition, we have

V= Qm+1Vm+1 + -+ + GpUn

<U7 uz) = Um+1 (Um—i-ly uz> +--+ an<vn’ an> =0

for 1 <i < m since u; L v; (m+1 < j <n). Therefore, we can see that v L span(u,...,un),
so by definition v € S*. Therefore span({vmi1,...,v,}) C S+.

Therefore we can see that {vy,41,...,v,} spans S L and since it is part of an orthonormal basis
(of V'), we know that it is orthonormal itself. Therefore {vp,41,...,v,} is an orthonormal basis
for S+ O

From this proof, we can see that dim(S+) = n —m and dim(S) = m.

Lemma 9 Let V =S+T. If dim(V) = dim(S) + dim(V'), then V = SEPT.

Proof: Let {uj,...,u,} be a basis for S and let {vi,...,v;} be a basis for . Thus by the
hypothesis, we know that dim (V') = r+k. Consider x € V. Thus we know that z = u+wv, where

u € span(uy,...,u,) and v € span({vi,...,vx}). Thus we know that {ui,...,up,v1,..., 0%}
spans V. Since dim(V') = k + r, we know that {u1,...,u,,v1,...,v;} is linearly independent
(if not we could find a smaller spanning set), and therefore is a basis.

Now suppose 0 = u 4+ v = ajuy + - - - + apu, + vy + - - + bpvg. Since {ui, ..., up,v1,..., v} is

a linearly independent set, we know that
O=au1 4+ +aru, +bv1+-- -+ by = a1=---=a,=by=---=b, =0

Therefore, 0 = u+v = u = 0 and v = 0. Therefore, by theorem, we know that V= S@ 7. O

Therefore, from the lemma above, we know that if V = S + S+, then V = S S*.

If V=S@ S+, then for any € V, we know that x = u + v for a unique v € S and v € S+,
If {uq,...,un} is an orthonormal basis for S (with respect to an inner product) then we know
how to construct u. Namely,

U= <‘/Ea U]_>U1 + <33,’LL2>U2 +ooot <:C,um>um
Note this is called the projection of x onto S. We can also see that v =z — u.

Definition 11 Let x € V and U be a subspace of V.. Thus we can see that V =U @ U~*. Thus
we can see that for any x € V, x = u+ v for a unique v € U and v € U*. We can define the
unique mapping P : x € V — u € U as an orthogonal projector. u = P(x) is known as the
orthogonal projection.

What does P look like? Suppose 2 € U C V. Then we have that P(xz) = x since x = x 4+ 0
and 0 L z. Suppose that z € V. By definition, we know P(z) € U, so P(P(z)) = P(x).
Therefore, we have that Po P = P? = P (idempotent). Let 2,y € V, what does P(z + y) look
like? We can decompose = and y such that z = u; + v; and y = ug + vo where uy,us € U and
v1,v9 € UL, Therefore, we can see that P(x +y) = u1 + ug = P(x) + P(y). We can also see
that ax = au; + av;. Therefore, we can see that P(ax) = au; = aP(x). Therefore we can see
that P is a linear map or linear transformation.

For any x € V, we can see that x = P(z) + v = P(x) + (I — P)(z). Thus we can see that
I-P:xecV —sveUt.

Definition 12 IfV = S@T, then x = Ps(xz) + (I — Ps)(x) is called an oblique projection.
If T = S+, then it is considered an orthogonal projection.

12
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Theorem 5 (Pythagoras) Let x € V and let U be a subspace of V. Then x = u + v where
uwelU andv e Ut.
llz]? = [ul* + [fo]*

Proof: Let z € V and let U be a subspace of V. Then z = v + v where v € U and v € U+,
Then

j2|* = [Ju +ol]* = (u+v,u+v) = (u,u) + 20w, v) + (v,0) = [[ull* + 2(u, v) + [Jv]|?

since u 1 v, we have
lz]? = ful[* + [v]®

O

Theorem 6 (Approxzimation Theorem) Let V be a vector space. Let U be a subspace of V.
Let x € V. Then
|z = Py(@)|| < [lz —ul| YueU

where Py (x) is the orthogonal projection of x onto U.

Proof:
|z —ul|[® = |Jo— Py(z) + Pu(x) —ul|” = ||z — Py()|]* +2(z — Py (x), Pu(x) —u) +||Py(z) —ul*

Notice that  — Py(x) € Ut and Py(x) —u € U. Therefore by the Pythagoras theorem, we
know that

le —ul? = ||z = Py(@)|* + ||Py(2) = ul® = [lo— Pu(@)|]* = ||z — ull* - ||Py(z) - ul
Therefore, by the positivity of norms, we know that ||z — Py(z)|| < ||z — u|| Vu € U with

equality when Py (z) = u. O

Using the approximation theorem, we can construct the projection matrix used in linear regres-
sion.
Let V =R" and {uy,...,up} be an orthonormal basis for U.

Py(z) = (z,u1)ur + (x, ug)us + - -+ + (z, up)up
= ujruy + ubzug + -+ + u;,xup = Ul T + uguhHT + -+ - + upu;,x
= (uruy + uguy + - - + upu, )z = QQ'w

where @ = [u1,...,up]. Suppose you are given a matrix of predictors X € R"*P, where the
columns of X are linearly independent and span(U) = colspace(X).
We can start with a QR decomposition of X = QR, where @ is orthogonal and R is upper
triangular.

X=QR = QX=QQR=R

Since the columns of X are linearly dependent, we know that the diagonal elements of R are
non-zero. This means that Rz =0 = z =0 = JR~! Since we know the projection matrix
is QQ', we have

QR =X(R'RX' =X(RR) X' = X(X'QQ'X)"'X’
Notice that QQ'X is the projection of X onto itself, so QQ'X = X. Therefore, we have
QQ' = X(X'X)7'X’

which is the projection matrix found in classical linear algebra books.

13
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1.3 Linear Transformations and Matrices

Definition 13 Let V and W be vector spaces. Let dim(V) =n and dim(W)=m. T :V - W
is defined as a linear transformation and has the following properties

1. T(x+y)=T(x)+T(y) Ve,y eV
2. T(ax) =aT(z) Ve e V,a € F

From this definition, the we can see that 7'(0) = 0 (T'(z) = T(x+0) =T(z)+7(0) = T(0) =
0).

Suppose T : V — W (T € L(V,W)). Let {v1,...v,} be a basis for V. and {w,...,w,} be a
basis for W.

Thus consider x € V. Thus we have ziv; + - - - + z,v,. Therefore we have

T(x) =ax1T(v1) + -+ 2, T (vp)
Since T'(vj) € W, we can say that T'(vj) = tijwi + ... tmjwm,. Thus we can see that
T(x) =z1(tiiwr + .. tmiwm) + -+ + Tp(tinwr + - b W)

Thus we can see that ¢;; is the coordinates of T'(x) with respect to the basis vector v; and basis
vector wj. We can use this idea to formulate a matrix.

Definition 14 A matriz, A = M(T(z),{v1,...,vn},{w1,...,wn}), are the coordinates of
T(X) € L(V,W) with respect to the bases {v1,...,v,} € V and {w1,...,wy,} € W.

t11  to1 tin

to1 22 ton
A= ,

tml tm2 tmn

Thus form this definition, we can see that T'(x) = Az = x1(t11w1+. . . tpiwm) +- - -+ xp (trpwr +
oo tmnWy,) Or

t11 ter ... tin| |71

tor to2 ... ton T2
Ax =

tml tmg ce tmn Tn

Lemma 10 M(SoT) = M(S)M(T)
Proof: Let7T:V — W and S: W — U. Let {v1,...v,} be a basis for V, {wy,...,wn} be a
basis for W, and {u1,...,u,} be a basis for U.
SoT(v;) =S(T(vj)) = S(tijwr + -+ + tmjwm) = t1;5(w1) + - -+ + ;S (W)
We can see that S(wy) = sipu1 + - - - + sprup. Therefore, we have
S(T'(vj)) = t1j(s11u1 + ... Sprtup) + -+ + Lo (Stmut + - . . SpmUp)

= (t1js11 +t2j812 + -+ tmgStm)ut + - -+ (t18p1 + tosp2 + - -+ tingSpm)Up

thus we can see that the (k‘,j)th is Y tijsk for 1 <k <pand 1< j<n. Thus we can see that
> tijski is the (k, 7)™ element of M(S)M(T). Thus we have M (S o T) = M(S)M(T). O

Lemma 11 M(S+T) = M(S)+ M(T)

14



1.4 Adjoint (Transposes) on an Inner Product Space

Proof: Let {vi...vy} be a basis for V. Let {wi,...,w,} be a basis for W. Thus, we can
express S(vj;) and T'(v;) as:

S(vj) = syjwi + -+ + spjwy
T(vj) = tijwy + - - + thjwy
(S +T)(v;) = S(vj) + T(vj) = (s15 + ta)wi + - .. (snj + tnj)wn
Thus the (i, j)! element of M (S+T) is (s;j+t;;) for 1 <i<mnand 1< j < m. We can see that

this is equal to the (i, 7)™ element of M (S +T). Therefore, we have M(S+T) = M(S)+M(T).
O

Note that for any A € R™*"™ and B € R"*P, we have that
AB = [Aby : Aby : - - - : Aby)]

Thus we can see that

[Az]" = 2100 + -+ + Tpaw]”

= xla*Tl + -+ a:na*Tn
a*Tl
=[z1,...,xn) | ¢ | =2TAT
Ui
Similarly we have
[AB)T = [Aby : Aby : ---: Ab,)T
(Aby)T vl AT vl
— : — : — | : | AT = BT AT
(Ab,)T bZAT bg

Lemma 12 Let C : V. — W, B: W — U, and A : U — T. Then we have Ao (Bo () =

(Ao B)oC (Association of linear transformations).

Proof: Let x € V. Thus C(z) = y for a unique y € W. Similarly, we have B(y) = z for a
unique z € U and A(z) = m for a unique m € T.
Let D = Ao B. Thus, by construction, D(y) = m.

(Ao (BoC))(x) = Ao B(C(z)) = Ao B(y) = A(B(y)) = A(z) = m
(Ao B)o C)(x) = (Do C)(a) = D(C(x)) = D(y) = m

Therefore we can see that Ao (Bo(C) = (Ao B)oC. O

1.4 Adjoint (Transposes) on an Inner Product Space

Theorem 7 (Riesz Representation Theorem) Let ¢ : V — F (F is the field). Then there
exists a unique v € V' such that ¢(u) = (u,v).

15



1 Linear Algebra

Proof: Let {uj,...u,} be an orthonormal basis for V. Consider u € V. Therefore, we have
U= <U,U,1>U1 +eee <u>um>um

P(u) = ¢((u, ur)ur + - - + (U, um)um) = (u, ur)¢(ur) + - - + (U, tm) G (um)

= <u7 ¢(u1)u1 + -+ ¢(um)um>

Therefore if we let v = ¢(u1)uy + - - - + (U )tm, We have ¢(u) = (u, v).
Thus all we have to prove is the uniqueness of v. Suppose vi,v2 € V such that ¢(u) = (u,v1) =
(u,v2) Yu € V. Thus we have

(u,v1 —v9) =0 Yu e V

Letting u = v1 — v9 € V', we have that
<U1 — V2,1 —1)2> =0 = V1 = V2

Therefore, we proved that it is unique. O

Definition 15 LetT € L(V,W). Choose anyw € W. Let ¢ : V. — F such that ¢(v) = (Tv,w).
Let w* we the unique vector such that ¢(v) = (v,w*) Yv € V (Riesz-Representation Theorem).
Let T* be the map such that T*(w) = w* Yw € W. Therefore, we have

(Tv,w) = (v,w*) = (v, T"w) Yve Vwe W
The mapping T* is called the adjoint.

Lets explore the properties of the adjoint. Is T linear?
Let T* € L(W, V) thus we have

(v, T* (w1 + w2)) = (Tv, w1 +w2) = (Tv,wy) + (Tv,ws)
= (v, T"w1) + (v, T"wy) = (v, T w1 + T"ws)
Now consider (v, T*(aw)).
(v, T*(aw)) = (Tw, aw) = a(Tv,w) = alv, T w) = (v, T w)
Therefore we can see that 7T is linear.

Definition 16 We call A self-adjoint (or symmetric in real vector spaces) if A* = A.

1.5 The Four Fundamental Subspaces

Definition 17 Let A € L(V,W). The range (or column space) of A is range(A) = C(A) =
{Azjlz e V} CW

Definition 18 Let A € L(V,W). The null space of A is N(A) ={x e V|[Az =0} CV
The four fundamental subspaces are:

1. C(A)

2. C(A)*+

3. N(4)

4. N(A)*

Lemma 13 The range(A) is a subspace of W and nullspace(A) is a subspace of V.
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1.5 The Four Fundamental Subspaces

Proof: Let A € L(V,W). By definition, range(A) = {Ax|z € V'}. Therefore, Az = A(x) e W
by the construction of A. Therefore, range(A) C W.

Notice that 0 € V and that A(0) =0 (If Ax =y, then Az = A(z +0) = A(x) + A(0) =y =
A(0) = 0). Therefore, we have that 0 € range(A).

Let y € range(A). Thus for A(x) = y for some z € V. Let a € R. Since V is a subspace,
azx € V. Thus by the properties of linear transformations, A(ax) = aA(x) = ay. Therefore,
we have that y € range(A) = ay € range(A).

Let y € range(A) and z € range(A). Therefore we have Az = y and Azry = z for some
x1,x2 € V. Since V is a subspace, we know that (z1 4+ z2) € V. From the properties of linear
transformations A(x; + x2) = Ax; + Aze = y+ 2. Therefore, if y € range(A) and z € range(A),
then (y + z) € range(A).

Thus from the properties above, we know that range(A) is a subspace of W.

By definition, nullspace(A) = {z € V|Az = 0}. Therefore, by construction of the nullspace,
nullspace(A4) C V.

Since A0 = A(0) = 0, we have that 0 € nullspace(A).

Suppose that y € nullspace(A). Let a € R. Thus by the properties of linear transformations,
Aay = A(ay) = aA(y) = a(0) = 0. Therefore, we can see that if y € nullspace(A), then ay €
nullspace(A).

Let y € nullspace(A) and z € nullspace(A). By the properties of linear transformations, we
have A(y + z) = A(y) + A(z) = 040 = 0. Therefore, if y € nullspace(A4) and z € nullspace(A),
then (y + z) € nullspace(A).

Therefore, from the properties above, we know that nullspace(A) is a subspace of V. O

Theorem 8 (Rank-Nullity Theorem) Let A € L(V,W). Thus we have dim(C(A))+dim(N (4)) =
dim(V').

Proof: Let {1,..., 2} be a basis for the null space of A. Therefore, k = dim(N(A)) Since
N(A) CV, we can extend this basis to a basis for V. Let {x1,..., 2, v1,...,v,} be a basis for
v

Claim: {Avy, ..., Av,} is a basis for the column space of A.
Let z € C(A). Therefore, x = Ay for some y € V. Thus we can write x as

x=A(y) = Alarx1 + - + agxp + afr1v1 + - - - Qparvr)

=wmA(x1) + - + apA(zg) + arp1A(v1) + ... apr A(vy)
Notice that A(x;) = 0 since z; € N (A) (1 <i < k) Therefore we can see that
x=ap1Av) + ... apr A(vr) = app1Avy + - + agyr Aoy

Therefore, we can see that € span({Avi,..., Av,}). Therefore, C(A) = span{Avi,..., Av, }.
All that we have to do is prove that {Awvy,..., Av,} is linearly independent.
Suppose that a; Avy + - - - + a,Av, = 0. Thus we have

A(agv1 + -+ apv,) =0

Thus we can see that (ajv1 + -+ + a,v,) € N(A). Therefore we can say that

a1+ -+ avp =bxr + -+ by = av1+ -+ apvr — by — - — b =0
Since {x1,...,Zk,v1,...,0,} is linearly independent, we know that aj =---=a, =b; =--- =
by = 0. Therefore, a1 Avy + -+ 4+ a,Av, =0 = a3 = -+ = a, = 0, so {Avy,..., Av,} is
linearly independent. Therefore, {Avy, ..., Av,} is a basis for the column space of A.

17
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Thus we have dim(C(A)) + dim(N(4)) = dim (V). O

Let A e L(V,W). Let dim(V) = n. From this, we have that:
reENA) << Az =0 <= (y,Az2) =0 Vye W <— (A'y,x)=0 Vye W

(A*'y,2) =0 Yy e W = (Aly,2) =0 Yy e W <= z L C(A) < zecC(A)?*
Therefore, we can see that N'(A) = C(A)*. Thus, we have

dim(C(A)) + dim(C(4")) = dim(N(A)) + dim(C(A")) = n
We also have from the rank nullity theorem that
dim(N(A)) + dim(C(A)) =n

Therefore we can see that

dim(C(A")) = dim(C(A))
Definition 19 The rank of A is defined as rank(A) = dim(C(A")) = dim(C(A))
Definition 20 The nullity of A is defined as nullity(A) = dim(N(A))

Lemma 14 For any two matrices A and B, we have that rank(AB) < min{rank(A), rank(B)}.

Proof: Let A € R™*™ and B € R"*P. Let x € C(AB). Thus x = ABy for some y € R™. Thus
we can see that © = A(By), so x € C(A). Therefore, we can say that C(AB) C C(A). Therefore,
we can see that rank(AB) < rank(A).

Since rank(A) = rank(A’), we know that

rank(AB) = rank((AB)") = rank(B'A") < rank(B') = rank(B)
Therefore, we know that rank(AB) < min{rank(A),rank(B)}.

Theorem 9 (Rank Factorization)Suppose that A € R™*". Let rank(A) =r. Let C € R™*"
be a matriz such that the columns of C' form a basis for C(A). Then there exists a matric
R € R™™ such that A= CR

Using this theorem, we can prove (again) that rank(A) = rank(A’). From the rank factorization
theorem, we have that A’ = R'C’ we know that

rank(A") = rank(R'C") < rank(R') < # of columns of R = r = rank(A)

= rank(A4’) < rank(A)

Similarly, using A = (A’)’, we have
rank((A")) < rank(A’)
Therefore, we have that rank(A) = rank(A’).
U
Definition 21 Let A be a square matriz. Let N(A) = {0} (A is full rank). Then there exists

a matrix X, called the tnverse such that AX = I,.

Lemma 15 Let A be a square, full rank matriz. Thus there exists an inverse matrix X such
that AX = 1,,. X is also a matriz such that XA = 1I,.

18



1.6 Eigenvectors and Eigenvalues

Proof: Let A € R™*" such that N(A) = {0}. Thus there exists a unique X € R™*" such that
AX =1,.
AX =1, = (AX)A=(I,)A

AXA=A = AXA—-1,)=0

Therefore, we can see that (XA — I,) € N(A). By the construction of A, (XA — I,) = 0.
Therefore, we have that XA = I,,. O

1.6 Eigenvectors and Eigenvalues

Let A € R™*" Note that powers of a matrix exist (A4, A%, A3,... A"). Consider the following
polynomial of matrices:
P(A)=col + 1A+ A%+ . ep AT

Similar to how we can decompose an ordinary polynomial, we have
P(A) = co(A = MI)(A = XoI) ... (A= N\, )

Let « # 0. Thus we know that {z, Az, A%z,..., A"z} C R" is a linearly dependent set (n + 1
vectors).

By the linear dependence lemma, we know that there exists a j (2 < j < n) such that A/z €
span({x, Az,..., A7~'x}) Let k be the largest such integer.

Thus there exists ¢y, . .., ¢; such that coz + c1 Az + - - - + ¢ A¥x = 0 where ¢, # 0. Therefore we
can rewrite this polynomial as

Let u = (A —MNI)zx. If u =0, then x € N(A — A\I). If u # 0, then let w = (A — A1 D)u. If
w = 0, then we can see that u € N (A — \,_11).

If w # 0, we can continue in this fashion until we find a vector in the null space of (A — A;1).
If after k steps, the algorithm does not terminate, then we have

ck(A=XMIy=0

Since ¢ # 0 and y # 0, we have y € N(A — A\ I). Therefore any square matrix, there exists a
scalar A and a non-zero vector x such that (A — A\I) = 0.

Definition 22 Let 2(A — X) = 0. We call the vector x an eigenvector corresponding to A
and the scalar A an eigenvalue . Together we call E(A) = {(\,z)|x € N(A — \I),x # 0} the
set of etgenpairs.

Suppose that {A1,...,A\;} are distinct eigenvalues of A (\; # Xj, i # j). Let (A1, 1), (A2, 22),
.., (A, zx) be the eigenpairs of A. Then {z1,..., 2} is linearly independent.

Proof: Suppose that {x1,...,2;} is linearly dependent. Thus, 35,2 < j < k such that x; €
span({x1,...,zj-1}).

Chose the smallest such j. Thus we have that

(1) Tj = C1q1 +---+ Cj—1Tj—1

Multiplying (1) by A;
)\j.’L’j = Cl)\jxl —+ -+ ijl)\jfbjfl
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Multiplying (1) by A, we get
AZL‘]' = )\jl’j =cAx1+---+ ijlA:L'jfl

)\j(L‘j =ci\x1+--+ cj_l)\j_lmj_l

Thus we have
0= Cl()\j — )\1)$1 +---+ ijl()\j — )\jfl)lbjfl

Since {x1,...,x;—1} are linearly independent, we know that c;(A\; — A;) must be zero. But since
the X's are distinct, we know that ¢; = --- = ¢;—1 must be zero. However, by (1), we know that
xj = 0. Since z; is an eigenvector, we know that it cannot be zero (—+-).

O

Definition 23 We say that A is similar to B if there exists a non-singular matriz P such
that A= PBP~! or B= P~'AP.

Definition 24 We say that P is an orthogonal matrix if it is square and the columns of P
are orthonormal. Thus P'P =1, => P' = P~'. Thus we have PP' = I,, as well.

Theorem 10 (Schur’s Theorem) Let A € R™™ ™ Then 3 an orthogonal matriz P such that
P'AP =T, where T is upper triangular. The diagonals of T are precisely the eigenvalues of A.

Proof: We will start by proving that there exists an orthogonal matrix P such that PP AP =T
where T is a upper triangular matrix.
It is clear that the result holds for n = 1. Thus assume the result holds for (n — 1) x (n — 1)
matrices. Thus we have that

A’U1 = )\12}1 U1 7& 0

We can extend v; to an orthonormal basis for R" ({vi,ve,...,v,} =V = [v1 : T']). Thus we

have
AV = Afvy : T] = [Avy @ AT
, v _ [vjAvr VIAT] (A x
VAV = [F’] Aler )= [F’Avl I'Ar| ~ |o B

Since B is a (n — 1) x (n — 1) matrix, by the induction hypothesis, we know that B = UTU’,
where U is an orthogonal matrix. Therefore, we have

,_)\1@3AF_10>\1*10
VAV_[O urv’| 0 Uj|o T|[0o U

_)\1*10_)\1 *U/
~lo uT|lo U| |o UTU

Therefore, we know that * = vJ ATU. Thus we have that

s (1 0] [ vATU 1 0
VAV_[O UHO T |lo U

] _OTE

Thus we can see that U is orthogonal and 7T is upper triangular.

Now we will prove that the diagonal elements of T' are eigenvalues of 7. Suppose that A ¢
diag(T) = {t11,...,tun}. Since A is not on the diagonal of T', we know that (T'— )z =0 =
x = 0 since all diagonal elements are non-zero. Thus N (T — AI) = {0}, which would imply that
the eigenvector would be 0, which is a contradiction (—+).
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1.6 Eigenvectors and Eigenvalues

Now suppose that A = t;; = T — AI has at least one diagonal element equal to zero. Thus,
there is a free variable, which implies that there exist  # 0 such that (7'— AI)x = 0. Therefore
we know that (A, x) is an eigenpair of T'. Using lemma 16, since 7" and A are similar matrices,
we know that they have the same eigenvalues.

O

Lemma 16 Let A and B be n x n matrices such that P~*AP = B (A similar to B). Prove
that dim(N (A — X)) >0 < dim(N(B — \I)) > 0.

Proof: (=) Let P~'AP = B. Suppose dim(N(A — X)) > 0. Let x € N (A — \I) (z # 0).
Thus (A — M)z = 0. Thus we have

P Y A- XDz =(P'A- X P Hz =0
Since £ = PP~ 2, we have
(PPA- AP Yz =(P'A- AP YHYPPla = (P'AP - AP'P)P o = (B- AP 'z =0

Therefore P~z € N (B — ). Note that P~'z # 0 (If it was, then PP~'x = z = 0, which by
construction is not possible). Therefore, we know that dim(N (B — A\I)) > 0.

( <= ) Now suppose dim(N (B — X)) > 0. Let z € N(B — AXl) (z # 0). Thus we have
(B — M)z = (P~YAP — M)z = 0.

(PYAP — M)z =0 = P(P7'AP — X)z = (AP — AP)z =0
We can see that z = P~!Pz. Thus we have
(AP — AP)x = (AP — AP)P"'Pzx = (A — X[)Pz =0

Therefore, we can see that Px € N (A — A\I), where Pz # 0. Therefore we see that dim (N (B —
Al)) > 0.
Therefore dim(N(A — X)) >0 <= dim(N(B — X)) > 0. O

Theorem 11 (Spectral Theorem) Let A be a square and symmetric matriz. There exists
an orthogonal P such that P’AP = A, where A is diagonal.

Proof: From Schur’s Theorem, we have that
PAP=T
where T' is an upper triangular matrix. However, notice that
(P’AP) = PPAP=PAP=T'
since A is symmetric. Thus we have that
PAP=T' =T =A

Since T is upper triangular and 7" is lower triangular, we know that A must be diagonal. [

Definition 25 We call a matriz positive definite if A is real, symmetric, and all its eigen-
values are positive.

21



1 Linear Algebra

Note an alternate definition may be that a positive definite matrix is defined as any matrix A
such that 2’Az > 0 Vo € R™\ {0}. We can see that this is an equivalent definition since we
have
n
7’ Ax = 2’ PPAPz = /Ay = Z \iy?
i=1

where y = Pxz. Thus we can see that this will be greater than zero for all = # 0.
Why must covariance matrices be positive definite (positive semi-definite)?

Let z be a random vector in R™. We know that cov(a’z) = o’ a. Since cov(/z) > 0, we have
that o/ .« > 0. Therefore, we can see that 3, must be positive definite.

Theorem 12 (Cholesky Decomposition) Let A be a positive semi-definite matriz. Then
there exists a decomposition of A such that A = LL' where L is a lower triangular matriz.

Proof: We will first start with a matrix A that is positive semi-definite. Consider the Spectral
Decomposition of A
A=P'AP = P'A\'Y?A\'?P = BB/

where B = P'AY2. Note that we can take the square root of A since it is a diagonal matrix
with positive elements. We can then use a QR-Decomposition on B’

B'=QR = BB'=RQQR=RR=LL

Since R is upper triangular, we know that L is lower triangular. O

1.7 Singular Value Decomposition, Generalized Inverses, and PCA

Consider the structure of A € R™*". Let {vy,...,v,} be an orthonormal basis for R”. Suppose
we wish to form vectors in the column space of A, where A acts on the V}’s. We wish to define

Av; = ou; where o; = ||Avj]|
Thus we can see that u; = % (if well defined). When is u; not well defined? We can see that
it is not well defined when ail: 0 or Av; = 0.
Suppose that we are able to find Av; = oyu; fori =1,...,7 (r <n)suchthato; #0 i=1,...,7.
Can we choose orthonormal v;’s such that {uj,...,u,} is also an orthonormal set? Thus we
have that

1 1 1
(ui, uj) = (U—iAvi, O—jAvj> = —(Av;, Avj) = v;A'Av; = 0

0i0; 0i0;

Note that A’A is real and symmetric, thus by the Spectral Theorem we have
A'AP = PA

Let v; be the j'* column of P. Thus we have

AAvj=XNv; j=1,...,n

Thus we have
ng’Avj = U;)\jvj = )\j<’l}i, ’Uj> =0
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1.7 Singular Value Decomposition, Generalized Inverses, and PCA

Therefore, by letting v; be the 4% column of P, we have that {uy,...,u,} is also an orthonormal
set. Thus putting it all together, we have

op 0 0

0 0
A [vl vm] = [ul ur] : 0:2

O 0 ... o,

Theorem 13 (Singular Value Decomposition) Let A € R™*" that has rank r. Thus we
can decompose A as A = UDV' Where U and V are orthogonal matrices and D is a diagonal

matriz. We can write it as
_ X ool [V
a=ton vl o |1

Where Uy € R™*" are the eigen vectors of AA' corresponding to the mon-zero eigenvalues.
Uy € R™*™~" gre the eigen vectors of AA" corresponding to the zero eigenvalues (also can be
thought of as a basis extension). ¥ € R™" is a diagonal matrix containing the square root of
the non-zero eigenvalues of A’A or AA’. Vi € R " are the eigen vectors of A’A corresponding
to the non-zero eigenvalues. Vi € R"™ "™~ " are the eigen vectors of A’ A corresponding to the zero
etgenvalues.

Proposition: C(U;) = C(A) and C(Va2) = N(A)

Proof: We can start with the fact that
A=U2V] = U = A2~}

Let w € C(A). Thus w = Av for some v € R"™. Since V = [V} : V5] is a basis for R", we have
that v =Y | yv; thus we have

Av = ZaiAvi = Z o; Av;
i=1 i=1
since Av; = 0 for j > r. Thus we have that
AVia =Ui1Xa € C(Ul)

Therefore we have that C(A) C C(Uy). It is apparent that C(Uy) C C(A) since A = U1 XV) —
U; = AV~ L Thus we have that C(Uy) = C(A).

Now suppose that w € N(A). Therefore, we know that Aw = 0 (w € R™). Thus we have that
w =y, a;v;. Thus,

n T
Aw =0 — ZaiAvi = ZaiAvi =0
=1 i=1
Thus we have that
-
Zaiaiuizo = aqr=ay=---=q, =0
i=1
Therefore,

w = En:ozivi = z”: a;v; € C(Va)
i=1

i=r+1
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1 Linear Algebra

Therefore, we have that N'(A) C C(V3). From the original SVD, we have that [AV] : AVs] =
[U1% : 0]. Thus we can see that C(V2) C N (A). Therefore, C(Va) = N(A). O

From SVD, we have that A = UDV’ which means that A’ = VD'U’. Thus by analogy, we have
that C(A4") = C(V1) and N(A4") = C(Ua).
Thus we have the following:
1. Columns of U; create an orthonormal basis for C(A)
2. Columns of Uy create an orthonormal basis for C(A)* = N(A")
3. Columns of Vj create an orthonormal basis for C(A’)
4. Columns of V3 create an orthonormal basis for C(A")* = N'(A)
Using these properties, we can easily find the following orthogonal projectors:
1. Py =UU]
2. Py =WV
3. Pyay = V2Vy
4. Pprearny = U2Us
Definition 26 Let A € R"*"™. A~ is the generalized inverse of A if AA—A = A.

There are an infinite number of generalized inverses in general, and many ways to construct
them. One way would be to consider the full-rank factorization of A. Thus we have

A=CR

Thus we can see that
CRR'(RR)}(C'C)"'C'CR=CR
Thus we can see that one possible generalized inverse is A~ = R/(RR')~1(C'C)~tC".

Definition 27 Let A € R™™. A% is the Moore-Penrose inverse of A if the following
conditions hold:

AATA=A

~

2. ATAAT = AT
3. (AAT)* = (AAT)
4. (ATA)* = ATA
One property of the Moore-Penrose (MP) inverse is that it always exists and is unique. One

way to get the MP inverse is to use the SVD of a matrix. Consider a matrix A € R™*™. From
SVD, we have

¥ of [V
A=y 03] [0 0] [Vzl,]—UDV’

»1 o

Consider setting AT = VDTU’, where D = [ 0 o

} . Thus, we can see that

AATA=UDV'VDTU'UDV' =UDD* DV
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1.7 Singular Value Decomposition, Generalized Inverses, and PCA

R I R R | R

we have that AATA = UDV’' = A. One can check that the other 3 properties hold as well.

Since

Suppose we have a data matrix X € R™*P of rank r, where n is the number of samples and
p are the number of variables. Suppose that we wish to reduce the dimension of the problem
(to k < p). Suppose that X is mean-centered. Then we can see that the covariance matrix is
C =X'X/(n —1). Consider the SVD of X. Thus we have

!
X =UDV' = [Ul Ug] [§ g} [51,] where ¥ = diag(o1,...,0.), 01 >+ >0y
2

. Consider trying to find a linear combination of the columns of X such that the variance of that
variable is maximized. We can see that it is equivalent to the following maximization problem:

maz,|| Xv|| s.t. |[v]|> =1
Notice that V' creates a basis for R”. Thus we can see that v € span(V'), and
V=101 + CU2 + - + CpUp
[P=1 = +a+ -+ =1
Thus we have
Av =1 Xv1 + o Xvg + -+ + e Xvy, = croqug + - - - + ¢rop Uy
|1 X0|* = o} + Bos + -+ ol < (] +--- + o <o)

We can see that we achieve this upper bound when ¢; = 1 and ¢ = ...¢, = 0. Thus we
have that v; maximizes this problem. We call Xv; the first principal component, and vy the
loading vector. We can see that maximizing ||Xv||? will maximize the sample covariance of
this principal component. We can see that this principal component will roughly account for
0%/ 3" | o2 proportion of the total variance. When talking about the total variation of the
data X, we will be referring to the trace(X) (the sum of the variances of each column). Since
we know that the trace is the sum of the diagonal elements, or the sum of the eigenvalues of
X'X/(n —1), we know that V"X X'V/(n — 1) will have the same eigenvalues.

V'XX'V =V'UDV'VDU'V = (V'U)D'D(V'UY

Thus we can see that the corresponding variance explained by the j% PC is crjz /3 a2

We can find the second principle component by solving the following maximization problem:
maz,|| Xv||? st. v Lo, ||v]?P=1

The details are worked out in problem 38.

In general, we can just use the SVD of X to calculate the principal components. The matrix V'

are the loadings, and XV are the principal components. If we wish to approximate a matrix X

by a rank z matrix, then we can use the SVD decomposition. Notice that the SVD decomposition
can be broken down into a series of rank-one updates

-
/
X = E iU, V;
=1

where ] is the ith row of U and v; is the it" column of V. Thus we can use the first z sums to
have a rank z approximation of X. This method will preserve Y 7, 02/>"_, 02 proportion of
the variance.
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1.8 Determinants, Partition Matrices and Other Useful Lemmas
Definition 28 The Determinant of a matriz A € RP*P s the product of the eigenvalues.

The following are some basic properties of determinants
1. |AB| = |A||B] if and only if A and B are square
2. |[A7Y = &

Theorem 14 (Simultaneous Diagonalization Theorem) Let A be positive definite and B
be positive semi-definite. Then there exists a non-singular matriz U such that U'AU =1 and
U'BU = D where D are the eigenvalues of BA™!.

Proof: Consider the Cholesky decomposition of A, A = LL”, where L is lower triangular and

is also positive definite (since A is positive definite).

Therefore, L~! exists, and L' A (L_l)T = I. Consider the spectral decomposition of L~'B (L_l)T.
Therefore, we have TDTT = L™'B (L’I)T7 where TT?T = I, and D is diagonal. Let U =

(L_I)T T. Therefore, we have:

U'BU=D

UTAU =T L 'L (L) ' T=T7T =1

Therefore, U = (L_I)T T.
Claim: The non-zero eigenvalues of BA are the same as the non-zero eigenvalues of AB.

IBA — I\ = (—)\)"

1
I- )\AB‘ = |AB — 1)

1
I--BA|=(-\)"
$BA| = (0

Therefore, we can see that D are the eigenvalues of L~'B (L_l)T, which are the eigenvalues of
B (Lfl)TL*1 = BA~!. Since L™'B (Lfl)T and BA™!, are the same size, we know that D
are the eigenvalues of BA™L. O

Theorem 15 (Sherman—Morrison—-Woodbury formula) For all conformable matrices A, U,C,V,
we have that

(A+UCV) '=A"'— A" lUC + VATU)IvAa~!

Lemma 17 Consider the following block matriz:
A B
C D

We can invert this matriz in one of the following ways

1.
A B]"' [A14A'B(D-CA!'B)"'CA~! —A-'B(D-CA-'B)"!
c D| ~ —(D - CA~!'B)"lCA"! (D - CA-'B)~!

2.
A B (A—-BD"1C)"! —(A-BDT!C)"'BD"!
C D| ~|-D'c(A-BD!C)! D!'+D'C(A-BD'C)"'BD!

26



2 Multivariate, Quadratic Forms, and Other
Distributions

2.1 Multivariate Normal

Definition 29 We say that x has a multivariate normal distribution if it has the following pdf:

felxlps, 5) = Wemp{—;x S Laem)

What is the MGF of y ~ AV (0,X)?
Uy (t) = E(e')
/ 1 1 1 1

. t'y A < | _ AL < N Y
- [ e 9T v pav = [ e {30y - fay

= Ly = Ly—tzys iy —tz)bd

=exp 5 WGWJ i(y ) (y )¢ dy
Therefore, we have that

1
Uy (t) = exp {21:'21:}
If w#0, let x =y — p. Then E(x) = 0 and x ~ N(0,X).
Uy (t) = E(etY) = E(e! W) = E(e!™) + 4
Thus we have .
Uy (t) = exp {Qt’Et + t'u}
Suppose x ~ N (u, X). What is the distribution of y = Ax + b?
\I/y(t) _ E(et’y> _ E(et’(Ax—‘rb)) _ E(et’AX)et’b _ \I/y(A/t)et/b
oW AtTIUASAt t'b _ (Aptb) t+ 3t ASA't

Thus we can see that y ~ N (Au+b, AXA’). How do we guarantee that AXA > 07 We want
to show that X’ A¥XA'x >0 Vx#0 = y'Yy >0 Vy s.t. x # 0. Thus we need to argue that
x # 0 < y # 0. We can see that if x =0, then y = 0. Suppose that x 20 — y # 0.

Thus we have y = A’x = 0. How can we arrive at a contradiction? Consider (AA’)"1AA'x =
x = 0. Thus we arrive at a contradiction, and we know that A must be full row-rank. Therefore,
we have that y = Ax +b ~ N(Ap + b, AXA’) if A is full row rank (If not, then we have a
rank deficient distribution, which means that the pdf does not exist, but the distribution is still
valid).

Theorem 16 (Cramer Wald’s device) x is multivariate normal iff a’x ~ N'(a’'u,a’¥a) for
all a # 0.
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2 Multivariate, Quadratic Forms, and Other Distributions

Normal distributions have the following properties:
1. If x ~ N(p,X), and T is an orthogonal matrix, then we have Tx ~ N (T, TIT' =1)
2. Subsets of x are also multivariate normal
3. Uncorrelated = Independence

Note: The reverse of number 2 is not true. If all subsets of x are multivariate normal, that does
not imply that x is multivariate normal.

Now we will look at the conditional distribution of a multivariate random vector.

Y by . ) _
Lemma 18 M ~N (M : [ 11 12]) if and only if yi|y2 ~ N(p1 =125 (Ha—y2), 11—
Y2 po |’ [2o1 oo

Y1985 $a1) and yz ~ N(ug, Xo2)

Proof: (=)

Suppose {yl ~ N ({Ml} , FH Eu]). Consider the following transformation
Y2 po|’ [Xo1 o2

2 _ (1 —Y19555 | [m
29 0 I Y2

[2’1] _ [yl — 21222_21?&}
Z2 Y22

Using basic properties of the normal distribution, we know that

Al N I 0% | 1] [T —Z02s | [Bu 2] [I —21225211
Z9 0 I 125 ’ 0 I 221 222 0 I

Simplifying, we have that

[21} ~ N <[M1 - Z1222_21#2} [211 — %1985 N 0 ])
22 H2 ’ 0 222

Thus we have

Since cov(z1, z2) = 0 we know that z; 1L 29 (property of Normal distribution). Consider

21‘22 _ fZ1,22(Z1722) _ fz1(zl)f22(22) _ le(zl)

fzz(ZQ) f22<22)

Thus
Y1 — 212555 y2ya ~ N (1 — S12555 12, Z11 — S12855 D21)

Thus we can see that

Yily2 ~ N (1 — 212555 (12 — y2), 11 — 12555 Ta1)

Since [21] has a normal distribution, we know that zo = y2 ~ N(ug, 392). Therefore, we have
2

e | p| (X110 Y12 . .
if ~ N s ,then ~ N — Yo% _ ’Z —3.5) 3 and
[92} ([MJ [221 Ezz]) yrly> (11— Y1285 (2 — y2), ¥11 — E12X9) Ba1)
Yo ~ N(p2, ¥22).

(=)
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2.1 Multivariate Normal

Suppose we have that y1|y2 ~ N(Ml — 21222_21 (NZ — yz), Y11 — 21222_21221) and g ~ N(/J,Q, 222).
We know that fy, ., (y1,42) = fy|ye (W11y2) fy2 (y2). Thus we have that

1 B - - B 1,
(1) fyr o (Y1, y2) €$P{*§(y1*m+2122221 (h2—y2)) (B11—E1255; o1) 1(3/1*H1+2122221(Mryz))*gyézzzlw

A
Note that we can invert the [ by using the fact that

B

C D
e (A—-BD710)! —(A-BD™'C)"'BD™!

~ |-D7'Cc(A-BD7'C)"' D'+ D 'C(A-BD'C)"'BD™!

Thus we have that

~1 _ _ _ B _
o1 _ [211 E12} _ { (B11 — L1285 Xa1) ! —(Z11 — T12855 To1) 1 B2 805
o1 Moo — Y5t Y01 (D11 — L1280 Ba1) 7! X0 4+ 0 Ba1(Z11 — 12855 Xo1) 11935,

Let ¢ = (311 — L1285 Xo1) ! and v = %1985, . Thus we have that

E_l _ |: T/’ _1/)7 :|
Yy Sy + 'y

Consider @ = [(y1 — ) (y2 — pa)'] =7 {EZ; - ZS]

= (y1— 1) ¥y — 1) = 2(y1 — 1)y (Y2 — pi2) + (y2 — p12) S35 (y2 — p2) + (y2 — p2)' v 1y (y2 — pi2)
(g1 — 1) = v(y2 — p2)) (1 — p1) = Y(y2 — p2)) + (Y2 — p2)'S55 (y2 — p2)
Notice from (1), that we have
fy1,y2 (3/17 y2) X exp{—%@}

Thus we have

T2 (U1, y2) o< exp {_; (1 = m) (g2 —p2)] 27" [Ez; - Z;ﬂ }

We can see that this the kernel of a normal distribution, thus we know that
[?ﬂ} N ([m} [211 Em])
Y2 pa]’ [Yo1 B2

Therefore, H ~N (M , [E” Z”]) if and only if y1|y2 ~ N (11 — S1255; (2 — y2), T11 —
Y2 p2] 221 a2

S12555 Sa1) and y ~ N (g2, S22). g
Now we will explore the independence of normal random variables.

Y1 X2

y1 K1
Lemma 19 Suppose that ~N ,
bp [W] <[ } [221 X2

P ]) Then we have that y1 AL yo if and
2
only if X152 =0.
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2 Multivariate, Quadratic Forms, and Other Distributions

Proof: We have that
! ! 1 / 1 ! /
\I’y(t) = exrp tlp/l + t2H2 + §t1211t1 + §t2222t2 + t1212t2

We can see that this factors into two normal mgfs if 315 =0

1 1
Uy, (61) Wy, (t2) = exp {t/ﬂh + 2'5/1211’51} + exp {tlguz + 2‘3/2222132}

O

Lemma 20 Lety ~ N (u,X) and define U =AY, V =BY. Then U and V are independent
if and only if cov(U, V) = AXB’' = 0.

Proof: Let W = [g] = [g] y. Thus we have that

cov(W) = [A} S[A B =

AY A’ AXB
B

BXA’ BXB’

From lemma 19, we know that A and B are independent if and only if AXB’ = 0. O

2.2 Quadratic Forms

Definition 30 Let x € R? and A € RP*P, We say that Q = x'Ax is a quadratic form in A.
Suppose x ~ N (s, ). Lets take a look at the expectation of Q.

E(Q) = E(x'Ax) = E((x—p+p) A(x—ptp) =E{(x — p) A(x — p) + p'Ap + 2(x — p)Ap}

=E{(x—p)Ax—p)} +p'Ap=E{tr((x — p)A(x — p)} + p'Ap
E{tr(A(x—p)(x—p))} +u'Ap =tr(AZ) + p'Ap
Therefore, we have if x ~ N (u,X), then E(x'Ax) = tr(AX) + /' Ap.
Lemma 21 If X ~ N (p, X), then we have that (x — p)' 37 (x — p) ~ X;QJ-

Theorem 17 (Fundamental Theorem of Quadratic Forms) Let y ~ N(0,I) and Q =
y'Ay. Then Q ~ x? <= A% = A and rank(A) =r.
Proof: (=) Suppose that Q ~ x2. Then we have that

Uo(t) = (1—12t)7"/2 =E(e9)

,ly/y
_ ety’Ay e 2 d
/ (V2m)p Y
eféy’(IthA)y
[ Ty
/ (V2m)p Y

o3y (I-2tA)~ )~y
a / (V2 )P|I — 2tA|-1/2

dy|I — 2tA|~1/?
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2.2 Quadratic Forms
= I —2tA|7/?
Thus we have that
(1—2t)" =|I—-2tA| = |T'T — 2t TDT'| = |TT’|?|I — 2tD|

Thus we have
P

(1—2t)" =[] -2t\)

i=1
This equation holds for all ¢ € N.(0) and by the fundamental theorem of algebra it has p roots.
We can see that the only way that can happen is if A has r eigenvalues equal to 1, and the rest
equal to zero. This means that A? = A and rank(A) = r.
() <= ) Suppose that A? = A and rank(A) = r. Then we have that
Q=y'Ay =y'TDT'y = zDz

Notice that z = T'y ~ N(0,I). Thus we know that the z;’s are independent and have a
standard normal distribution. Therefore, we have

p T T

/ _ 2 2y E 2y, § 2

z Dz = Zi)\l_ Z,L‘>\/L— Z;
=1 =1 =1

Therefore, we know that Q ~ x2. O
What if y ~ AV (0,%)? Let z = yX~/2 ~ A(0,1). Then we have
Q=yAy= 2 B2ARY 2,

From the Fundamental theorem of Quadratic Forms, we know that Q ~ y? <= SZARYZS2AR? =
»/2A2Y2 or in other words, AXA = A.

Lemma 22 If U and V are two independent normal random variables, then U 1. V'V and
U'U 1L V'V.

Example: Lets prove that ¥ 1l S% where S* = 15" (y; — ) and y ~ N(0,I). Note that
y= %1’y and S? =y'(I - 1Tl/)y Let U= %1’y and V= (I— 1Tll)y Thus we have

1 11/
cov(U, V) = cov(— 1y, (I-==)y)

=-1 I-—)=-1(I-—
covly)(T——-) = —1(I- =)
1, 111/ 1., 1.,
n n n n

From lemma 22, we know that y = U 1L V'V = 52,

Theorem 18 Let Q; = y'Ajy wherey ~ N(0,1). If Q; ~ X2, then Q1 1L Q2 < A1A; =0.
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2 Multivariate, Quadratic Forms, and Other Distributions

Proof: ( = ) Suppose that Q; 1L Q2. Since Q1 ~ X%l and Qg ~ )&2, we know that
Q1+ Q2 ~ X2, 1r,- We know that Q1 + Q2 = y’(A; + Ap)y. From the fundamental theorem of
quadratic forms, we know that (A; + As) = (A1 + A2)(A1 + Ag). Thus we have

(A1 4+ A2) (A1 +Ax) = A2+ AjAy + AsA  + A3 = A + Ay

— (*)A1A2 +A3A; =0
A1A Ay + AJAQA ) = AJAS + A1ALA1 =0

AASA + AsA1AL = A1AAT+AA1 =0

From this, we have
A1As = AsA,

From (%), we have that
AiAs = AsA; =0
(<= )If A1As =0, cov(A1y,Asy) = A;IA,, = A1 Ay = 0. Therefore, by lemma 22, we know

that since A1y AL Asy, we have Q1 = y'A1y 1L y' Aoy = Q-.
O

Lemma 23 Let y ~ N(0,I) Suppose Q; = y'Ajy (Qi ~ x2,) fori=1,2 and Q1 — Q2 > 0,
then Q1 — Q2 ~ X7, _,, and Q1 — Q2 1L Q2,

Proof: Suppose that Q1 — Q2 > 0, Thus we know that 0 < y’(A; — Ay)y Vy. In particular,
consider y € N(A1). Thus we have

0<0-y'Agy
Since y'Asy > 0 we know that y’Asy. From the idempotency of Ay, we have that
y,AgAgy =0 = A2 S N(Ag)

Therefore, we have N (A1) C N(A,). For all y € R", we have

(I— Ay e N(A1) CN(A2)
Since Ay(I — A1)y = OVy, we have that Ao(I — A1) = 0 or Ay = Aj; Ay (we also have that
AL =As=ALA| = AsAy).
Thus we have

(Al —A)?=A2 —AA) —AQA +A2=A, - Ay — Ay + Ay = A, — Ay

Therefore, by the fundamental theorem of quadratic forms, we know that Q1 — Qo ~ Xﬁl_rz,
where r; = tr(A;) and ro = tr(Asz).

We can also see that (A;j—A3)As = As—As = 0, so by theorem 18, we have that Q1 —Q2 1L Qo.
O
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2.3 Non-Central Distributions

2.3 Non-Central Distributions

We know from previous classes that if y ~ N,(0,1), that y'y ~ x2. What happens if y; ~
N(0;,1) where y; A y; for i # 57

Definition 31 Let y; ~ N (0;,1) where y; 1L y; fori # j. Then z =y'y = >0 y? ~ x2(9),
where § = Y1, 02. We call this distribution the Non-Central Chi-Squared Distribution,

i=1"17"
and 0 is known as the non-centrality parameter.

The Non-Central Chi-Squared distribution has the following properties:
L E(2) = 30 Byf = Y0 E(y — 0+ 60:)* = X0 E(yi — 6:) + 67 + 0E(y; — 0;) =
n+>r,02=n+0
2. var(z) = S0 E(yi)* — E(y;)? = 2n + 46
3. If z; ~ x2(6;) and 2z L 2, then we have 21 + 23 ~ x2(61 + 02)

We know from previous classes that if we have y ~ A(0,1) and z ~ x2 where y 1L z, then
Y _ ~t,. We can extend this to a non-central distribution.

\/z/n
Definition 32 If y ~ N(0,1) and z ~ x2(8) where y 1L z, then \/yT ~ t,(8). We call this
distribution the Non-Central t Distribution.

z/n

We know that if x ~ x2 and y ~ x2 where x 1L y, then i~ Fn,r. We can similarly extend
this to a non-central distribution.

Definition 33 If 2 ~ x2(8) and y ~ x? where x 1L y, then % ~ Fnr(0). We call this
distribution the Non-Central F Distribution.

If y ~ N(p,X) then what is the distribution of @ = y’Ay? We can rewrite @ in the following
form:
Q — y/z_1/2TT/21/2A21/2TT/2_1/2y

Let T be the orthogonal matrix obtained by the spectral decomposition of »1/2A%Y2. Thus
we know that T'SY/2AXY2T = D is diagonal. Let z = T'S~'/2y. Thus we know that
z ~ N(T'S7Y2 . T). Therefore, we have

Q =7zDz = Z)\izf
i=1

where \; are the eigenvalues of »1/2AX1/2. Therefore, we can see that @ is a weighted linear
combination of independent x?(p’ - Qtit;E_l/ Q,u) random variables, and the weights are the
eigenvalues of »1/2A%1/2,

Consider the following special cases:

1. ¥ =1, A2 = A and has rank r.

Thus we have that D = diag(1,1,...,1,0,...0) with r 1’s (since idempotent matrices
have eigenvalues of either 1 or 0). Therefore, we have

,
Q =7zDz = Z 22
i=1
Since we know z ~ N (T'S~Y2y, = T, I), we have that

;
Q=> xi(ptitip)
=1

33



2 Multivariate, Quadratic Forms, and Other Distributions

efe(s)

However, notice that (3._; t;t;) = T'DT = A. Thus we have that
Q ~ X7 (W Ap)

2. A=x"1

Thus we have that D = T'S'Y2AXY2T = I. We also have that z ~ N (T'27/2pu,T).
Thus we have that

Q=2zDz=17z

n

Q=Y W= ttx 1 p)
=1

Q=xz (u’21/2 (i tit2> 21/2u>
i=1
Since Y1, tit; = T'DT = £Y/2AXY2 = 1, we have that
Q~xp(WE ')
Let y ~ N(0,X) and Q = y’Ay. What is the MGF of Q7

e 3Y'S Ty

_ tQy ty’ Ay
Uq(t) =E(e )_/e (27r)p/2|2‘1/2dy

e—%y’(Efl—QtA)y

CRREPEE
o3y (B71-2tA)"1)"ly .
B / 221251 — 2A) 112z — 2A|l2?Y
_ 1
CZ2m - 2tA Y2

For t sufficiently small enough. If we have that 3 = I, then we have

1
T —2tA|1/2

Using the spectral decomposition of A, we have

1 1 1
T - 2tT'DT|Y/2 I-2tD|Y/2 (1 —2t)/2

t<1/2

We can see that this is the MGF of a x? distribution.

Theorem 19 (Craig’s Theorem) Lety ~ N,(0,X) and Q; = y'A;y i=1,2. Then Q 1L
Qs iff A;S A, = 0.
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2.3 Non-Central Distributions

Proof:

_ t1Q1+t2Q2 _ Y (t1Ar+tAg)y & ©
U, (t1,t2) = E(e ) = /e (27.‘.)p/2‘2|1/2 dy

o—3Y (BT1-(2t1A1+2t2As))y
/ ”
(2m)P/2[ 33|12

e~ 3Y (B71-(2thA1+2t2A0)) ") Ty

/ (2m)P/2|B V2| (BT — 281 Ay — 2t An) " H|V/2|Z T — 2t Ay — 265 Ay |1/2 v

1
T Z2S T 26A, — 2t0A0[1/2
1
T I-26ZA; — 2,5 A,|1/2
1
T I-263A; - 26,5A, + 416 A1 DA, — At A S A2
1
~ T 205A) 0 - 5A,) — A SA, 2
From above, we know that the MGF of the joint independent @)1 and @2 would be

1
- 265A, 21— o 5A,2 )

We can see that (x) and (x%) equal each other iff and only if 4¢1t5A13 Ao for all t1,¢2 in a
sufficiently small neighborhood around 0. We can see this can only happen if A;3As = 0.
Therefore, we have that @)1 1 Q2 iff A;3 A, =0. O

Theorem 20 (Loyne’s Theorem) Let M2 =M =M’ and P > 0. IfI—-M — P > 0, then
MP =PM = 0.

Proof: Let x € RP and y = Mx. Then we have that
0<yI-M-P)y
=xM'(I-M — P)Mx
=x'(M - M — MP)Mx
= —x'MPMx
=-yPy<0 = Py=0
Thus we have PMx = 0 for all z € RP. Therefore, we have PM = MP = 0. (]

Lemma 24 (Graybill and Marsaglia’s Lemma) Let D, = D, ¢ = 1,...,k and D =
Zfil D;;. Then any of the two following statements imply the third:

1. D? =D;
2. D?2=D
3. D,D; =0
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2 Multivariate, Quadratic Forms, and Other Distributions

Proof: (1+2 = 3)
Since (2) holds, we know that D is idempotent. Therefore, we know that I — D is idempotent.
Thus we have

I-D,—~D;,=1-D+D-D, - D;

We know that I — D is positive semi-definite, symmetric, and idempotent. We know that
D-D;-D; =)k #i,jDy. Since by 1, D; is idempotent and therefore positive semi-definite,
we have that > k # i, jDy is positive semi-definite. Thus we have that

I-D;,-D; >0
Thus by Lyone’s Theorem, we have that D;D; =0 Vi # j.
(1+3 = 2)
K 2
D? = (Z DZ-)
i=1
K
> D+ i# DD,
i=1
K
=> D;+0=D
i=1
2+3 = 1)
Let A be an eigenvalue of D;. Then there exists x # 0 such that D;x = Ax. If A # 0, then
X = D/\ix. Thus we have
SK D) Dix 2
DD;x i=1"11 ¢ D;x D D;x D 3
X = = = = . —_— = X = X
A A A A !

Since by (2) we have that D? = D, we have that A = 1. Thus the eigenvalues of D; are 0 or 1.
Therefore, we know that D; is idempotent. ([

Theorem 21 (Cochran’s Theorem) Let y ~ N,(0,1) and suppose that y'y = S5 Qi
where Q; = y'A;y where A, = A; and has rank r; for i = 1,...,K. Then we have that the
following are equivalent:

1L Qi1 Q; 1<i#j<K

2. Qi~xp i=1,...,K
3. Efilri:p

Proof: (1 = 2)
We know that @; 1L Q; 1 <i# j < K. Thus we have that

YAy Ly A+ +Ag)y =y'I1- Ay

By Craig’s Theorem, we know this is true iff A;(I — Ay) = 0. Therefore, we have A; = A%.
Thus by the Fundamental Theorem of Quadratic Forms, we have that y’Ajy ~ X92~1' Similarly,
we can show that y'A;y ~ X72"i fori =2,..., K. Thus we have y'A;y ~ X%i fori=1,...,K.
(2 = 3)
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2.3 Non-Central Distributions
By the setup, we know that Zfil A; = 1. By the Fundamental Theorem of Quadratic Forms,

we have that A? = A;. Thus we know that tr(A;) = rank(A;). Thus we have

K

o= tr(A) =tr(d_A)=tr(I) =p

=1 =1 i=1

B3 =1
We know that I = Zfi 1 A;. Thus we can decompose it in the following way:

I=A;+ (I — Al)
Using the spectral decomposition of A1, we have

T'IT =TA; T+ T'(I-A)T

10 ...0 A0 ... 0 di 0 ... 0
0 1 0 0 A ... 0 0 dy ... 0
- - . . . . + . . ‘. .
00 ... 1 0 0 ... X 0 0 ... d

We know that \;’s are eigenvalues of Aj. Since rank(A1) = r1, only 1 of them are non-zero.
diag(1,...,1) = diag(M,..., Ay, 0,...,0) + diag(dy,...,dr,,dy,...,dy)

This implies that d,, 41 = -+ = dp = 1. Since rank(T'(I — A1)T) = rank(I—A) =p —r1, we
know that d; =0 fort=1,...,71.

Since we know that I— A; = Ay + Az +---+ Ag. Consider T'A;T. We know that the first rq
diagonal elements cannot be non-zero (if they were, then rank(As+ As+---+Ag) >p—r1.)
Thus we know that

AA; = diag(Ai,. .., A, 0, .., 0)diag(0, ..., 0,y 41,...1,) = 0

Therefore, by Craig’s Theorem, we know that ;1 1. Q; for j = 2,..., K. Similarly, we can
replace A with A; (j =2,...,K) to get the result that Q; 1L Q; 1 <i# j < K. O
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3 Linear Regression

3.1 Least Squares Estimate

Consider the following model:
y=XB+¢€

A

where X is full column rank. We wish to find the parameter estimates of 8 (3) such that
€€ is minimized. One way to do this would be to take the derivative and solve the normal
equations to get the least squares estimate. Another way would be to use to use the Ap-
proximation Theorem (theorem 6). We know that €'e = ||y — X3||>. Thus we know that
X3 = Px(y) = X(X'’X) X'y (proof of Px(y) = X(X'X) X'y can be found after the

Approximation Theorem).

In order to perform inference on the model, we need to specify some properties of €. Thus

consider the following model:
y=X0B+e E(e) =0 wvar(e) =o’l
Thus we can establish some properties of ,3

1. E(B) = (X'X)"'X'E(y) = (X'X)"'X'X3 =3

2. var(B) = (X'X) "1 X var(y)X(X'X) ! = ¢2(X'X) 1 X/X(X'X)"! = 02(X'X) !

Theorem 22 (Gauss-Markov Theorem) Let 0 be the least squares estimate of 6 = x03,
where @ € C(X). Then among the class of linear unbiased estimates of ¢'@, '@ is the unique

estimate with minimum variance.

Proof: We know that ¢’8 = ¢/’Pxy. Let d’y be any other unbiased estimate of ¢’8. Thus we

have
o = E(d’y) =d6 —= (c— d)’O =0

Thus we have that ¢ —d 1L C(X). Therefore, we know that
Px(c—d)=0 = Pxc=Pxd

Thus we have

var(c') = var(cPxy) = var((Pxd)'y) = (Pxd) ¢?I(Pxd)

= 0’d'PxPxd = ¢°d'Pxd

Thus consider

var(d'y) — var(c'8) = d'0’1d — 6*d'Pxd = 02d’'(I — Px)d

= 02d'(I - Px)(I - Px)d = ¢d1d; >0

Note that ¢?djd; = 0 <«= d'(I-Px) = 0 ord = Pxd = Pxc.

d'y = ¢’Pxy = c’0. Therefore, ¢’8 has the minimum variance, and is unique

Thus we have

O

Lemma 25 If X has full rank, then a’B is the BLUE (Best Linear Unbiased Estimate) of a'(3

for every vector a.
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3 Linear Regression

Proof: We know that @ = X6. Thus we have that 8 = (X'X)7'X'0 and 38 = (X'X)71X'6.

Therefore we can let ¢’ = a’(X’X)~!X’, and use the Gauss-Markov Theorem to prove that a’3
is the BLUE (Best Linear Unbiased Estimate) of a’3 for every vector a. (]

Earlier in this section, we figured out that var(8) = 02(X’X)~!, but how do we estimate ¢2?

Theorem 23 IfE(y) = X3, where X is an n x p of rank r < p, and var(y) = oI, then

¢ y=0)(y-0) _ RSS

n—r n—r

is an unbiased estimate of o2.

Proof: We know that y — 0 = (I — Px)y. Thus we can rewrite 52 as

SQZM
n—r

Taking the expectation of S?, we have

pst) - EYI=Px)y) _ tr((1-Px)eT) + E(y) (I - Px)E(y)

n—r n—r

(n—r)o® +BX'(I-Px)XB _(n—r)o’+BX'XB-BX'XS3

n—r n—r

n—r

7’\ 4 7,\ . . .
(y ?jﬁ’ 9 ];f f is an unbiased estimate of o2. U

Therefore, we can see that S? =

Suppose we want to know the variance of S?. We know that

_ 2 /
M =X @-Px)Y ~ 2 (X1~ Px)XB=0)
g (o g

Thus we know that

204

— var(S?) = e
Theorem 24 Ify ~ N, (X3, 0%1,), where X is n x p of rank p, then:
1. B~ Ny(B,02(X'X)™1)
2. (B-BYX'X(B-B)/0” ~x;
3. ,@ is independent of S?

4. RSS/o? = (n —p)S?/o? ~ X%—p
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3.2 Adding Further Explanatory Variables

Proof: (1)
We know that 3 = (X’X)~ !X’y and that y ~ N, (X3, 02L,). Thus we have

B~ N, ((X'X)IX'X3 = 3,03(X'X) 1 X'X(X'X)! = o2(X'X)7})

(2)
We know that z = # ~ Np(0, (X'X)~1). Thus consider z'(X'X)z. We know that z'(X'X)z ~
Xz = (X’X)E(X'X) = (X’X). Thus we have that

(X'X)B(X'X) = (X'X)(X'X) " (X'X) = (X'X)

. Thus we know that (8 — 8)'X'X(8 — 8)/02 ~ Xa
3)

In order to prove that S? is independent of ,3, it is sufficient to show that V = B 1 U =
(I - Px)y. We know that 3 1= (X'X)"!X’'y. Thus we can see that

\% X (X'X)~1X! y— X3 - X(X'X)" X/

Thus we have that

[g] ~N ([y —ﬂxg} o [(X/i)()_l I- X(XO’X)—lX’D

Thus, by the properties of ngrmal distributions, we know that V 1L U. Therefore, by lemma,
we know that V 1L U'U or 3 1L S2.

(4)
We know that
RSS =y'(I-Px)y
Notice that
(y —XB)(I-Px)(y - XB) =y'(I-Px)y — 2y'(I - Px)XB + B'X'(I- Px)'Xp
Since y'(I — Px)X3 =0 and B'X'(I - Px)'X3 = 0, we have
(y —XB)(I-Px)(y—XB)=y'(I-Px)y =€ (I-Px)e
Where € ~ Ny, (0,0%I). Thus we know that £ ~ A, (0,I). Thus by the Fundamental Theorem

of Quadratic Form, since I — Px is idempotent, we have that £35 = 6—/(I —Px)E ~ X%_p O

[oa e

3.2 Adding Further Explanatory Variables

3.2.1 Mutually Orthogonal Columns of Design Matrix

We will first consider the case where the columns of X are mutually orthogonal. Let
X = (x0,X1,...,Xp—1)

Thus we have that X
B=(X'X)"'Xy

xXpxo 0 ... 0 X0y
0 xix1 0 x|y
0 0 Xp_1Xp—1 X, 1Y

41
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3 Linear Regression

(X;—lxp—l)flx‘fo—ly

Thus we can see that Bj = x;.y / (x;-xj). We can compute the residual sum of squares:
RSS = (y — XB)(y - XB) = y'y - 2y'XB + BX'X}3
=y'y =2y X(X'X) ' X'y +y'X(X'X) "' X'y =y'y - y'X(X'X)"' X'y
=y'y - y'XB
p—1
=y'y - Bixiy
i=0
We know that y = Bjxj for any j. Thus we have
p—1
RSS =y'y — Z B2 (x!x;)
i=0

Thus if we remove the j** predictor, we would have the following residual sum of squares:

p—1
RSS_;j=vy'y - Z B2 (xix;)
i=0,i#j

Thus we have
RSS — RSS_; = B2 (xx;)
3.2.2 General Design Matrix

Suppose we start with the following model:
E(y) = X8, war(y) ="l

where X is n x p. Suppose we wish to add a set of new explanatory variables Z € R™*!. Thus
we have

E(y) = X8 + Zvg

- x 7 [%]

= Wé

Thus we know that
0= (WW) "Wy wvar(d) = o*(WW)!

From the linear algebra sections, we know that we can represent Z as Z = PxZ + (I — Px)Z.
Thus we have

E(y) = XBs + (PxZ + (I - Px)Z)vs
=X(Bg + (X'X)'X'Zyg) + (I-Px)Zvg

=Xa+ (I-Px)Z~vq
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3.2 Adding Further Explanatory Variables

Notice that X 1L (I — Px)Z. Thus we can use the orthogonal columns of the design matrix.
Thus we have that

6= [(X?_l (Z/(1- gx)Z)‘l} [Z’(I)EI%X)Y}

5 [ (X'X)" X'y ]
T (Z(0-Px)Z)'Z'(1-Px)y

Thus we have that
& =Bg+ (X'X)'X'Zyg = (X'X) ' X'y

and
Yo = (Z'(1-Px)Z)"'Z'(I- Px)y

Thus we have that
Be = (X'X) X'y — (X'X)"X'Z(Z'(1 - Px)Z)'Z'(I1 - Px)y

Let y¢ be the estimated outcomes from using the extended model.

SSEc = (y —¥6)'(y —¥a) = (v = XBg — ZA¢)'(y — XBa — ZA¢)
Notice that

y - XBg - ZAg =y — (X((X'X) "' X'y - (X'X)'X'Z4¢)) - ZA¢

= (I-Px)y + (X(X'X)"'X' - I)ZA¢
= (I-Px)(y — Z9¢)

Thus we have that
SSEq = (y —Z4¢)' 1 - Px)(y — ZA¢)

=y (I-Px)y —2y'1-Px)Zy¢ + Y6Z' (1 - Px)Z9¢
=y'(I-Px)y —9¢(Z'(I1-Px)y — Z(I1-Px)Zy¢) - y'(I- Px)Zy¢

Notice that Z'(I— Px)Z4g = Z'(I - Px)Z(Z'(1— Px)Z)~'Z'(I - Px)y = Z'(I — Px)y. Thus
we have
SSEq =y I1-Px)y —y' (I-Px)ZA¢

= SSE —y'(1-Px)Z(Z'(1- Px)Z)'Z'(I - Px)y

Notice that SSEg < SSE since y'(I — Px)Z(Z'(I1 — Px)Z)'Z'(I1 — Px)y > 0. Therefore, we
have that SSE will go down as we add more predictors. But is there a price to adding more
predictors? Consider

Cov(Bg) = cov(B — (X'X)"'X'ZA)
= var(B) + (X'X) ' X' Zvar(4)Z'X(X'X) ™! = 2cov(B, (X'X) ' X'Z4)
= ?(X'X) 4+ A X'X)TIX'Z(Z' (1 - Px)Z) ' Z/X(X'X)" + 0

Thus we can see that the variance of B is at least as large as 3. Therefore, adding more
predictors often increases the variance of your estimated regression coefficients.
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3 Linear Regression

3.3 Linear Regression with Linear Restrictions
Consider the following model
y=XBy+e€ st. ABg=c

where X € R™*P with rank p, A € R7*P of rank ¢ and c is a known vector of length ¢q. Suppose
that B is any solution of A3 = c¢. Then we have

y = XBo=X(By —Bo) €
Thus we can transform our problem into the following problem
y=Xv+e€ and Ay=ABy —-AB;=0
Thus we have the model where §y = 6 + € where 6 € C(X). We know that
AX'X)IX'0 = AX'X) ' X'Xy=Avy=0

Thus we can see that 8 € N (A(X'X)"!X'). Let A; = A(X’X)"'X’ and w = V(A1) NC(X).
Thus we can see that we wish to find @ € w. Thus we have

X4y =P,Y = Pex)y — Putnex)y

We are just left to find what P,1n¢x)y is. From an identity, we know that wtNeX) =
C(Pc(X)All) where

Pex)Al = X(X'X) T IX'X(X'X)'A = X(X'X) 1A
Thus we have that
P, inex) = (Pex)A (AP x) A1) (A1Pe(x))

= X(X'X)TAAXX) AT AXX) T IX!

Thus we have
Xy =P,Y =Pex)Y =P inex)Y

= X(X'X) X'y - X(X'X)'X'X3, - X(X'X)TATAX'X) TA T AX' X)X (y — XB,)
= X(X'X) X'y - X(X'X)'X'X3, - X(X'X)TAAX'X) A TAX'X) " IX (y — XB,)

= X(X'X)™ Xy - X, - X(X'X)TTA[AX'X) AT AXX) T X (y — X )

= X(X'X) X'y - X8, - X(X'X) TA[AX'X) AT (AB - ABy)

Since AB, = c, we have

X3 — X8, = X(X'X) X'y — X8, - X(X'X)TA/[AX'X)'A|7HAB - ¢)

— By = (X'X) X'y - (X'X)'A[AX'X)PA]THAB — ¢
Therefore, we have
Bu =B— (X'X)AAX'X)"ATTH(AB — ¢)

where /@I g is the constrained estimate, and ,@ is the unconstrained estimate.

44



3.4 Design Matrix of Less Than Full Rank

3.4 Design Matrix of Less Than Full Rank

Consider the following model
y=XB+¢ E(e)=0, var(e)=c’l

where X € R™? is of rank r < p. Thus we can see that (X'X)~! does not exist. What is
the orthogonal projector onto the column space of X? We can show that X(X'X)~X’ is the
orthogonal projector onto the column space of X. Note that there is no linear unbiased estimator
of B8 when rank(X) < p. If E(y) = X3, then we desire a matrix C such that E(Cy) = 3. In
order to have this be true, we would need

CXB=p

This implies that CX = I, which is not possible since X is not full rank (but I is). Therefore, it
is impossible for us to unbiasedly estimate every 3; . However, it is possible for us to unbiasedly
estimate some linear functions of 3 using a linear function of y.

Definition 34 The parametric function a’3 is said to be estimable if it has a linear unbiased
estimate b'y.

What implications does this definition have? Let a'y be an unbiased linear estimator of ¢/3.
By definition, ¢’3 is estimable if

a’XpB =E(ay)=c'B Vg3
— c=Xa
Thus we can see that ¢ has to be in the rowspace of X.
Theorem 25 ¢/ is estimable < ¢ = /(X'X)"X'X.

Proof: (=)
If ¢’3 is estimable, then ¢ = X’a for some a. Thus we have

J(X'X)"X'X =a'X(X'X)"X'X =a'PxX =a'X="¢

Therefore, we have that ¢/ = ¢/(X'X)~X'X.
(=)
E(c'(X'X)"X'y) = ¢ (X'X)"X'Xg8 = ¢/

Therefore, a'y with a’ = ¢/(X'X)~X' is a linearly unbiased estimator of ¢/3. O

Lets look at an example. Consider the following one-way ANOVA model:

Yij=p+Tit+e; i=1,...,K j=1,...,n;

I
Ti
where E(e;;) = 0 and var(e;;) = o2, Our goal is to estimate 8 =
TK
In matrix form, our model looks like:
Yix ]-nl ]-nl Onl 0n1 12
Yo | 1, 0, 1., ... Oy Ty
Y K« 17lK OTLK OnK 1TLK TK
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3 Linear Regression

We can see that X'X is

where n = Zfil n;. We know that (X'X)~ takes the following form:

1’ 1 ... 1/ n  n
171 072 071( 1n1 1n1 On1 0’)7,1 n n
e I I T TS 0, b
0, 1, ... 0, 2o | =|n2 0
, 1 0 0 1
_Olnl 0;12 T 1nK_ " e e e —nk 0

n2

n2

[0 0 O 0]
1
0 (1) 0
(X'X)™ = 0 0 0
: : :
0 0 0 el
Thus, consider
0 0 0 ... 07 [n n ne
0 nill O “e O ni ni 0
d(X'X)"X'X=[cg e1 ¢ K| 0 0 % 0 ng 0 n
: : R
0 0 O el Lk 0 0
[0 0 0]
10 0
= [C() Cl C9 CK] 01 0
1 00 ... 1
== [Efil c; €1 Cy ... ij|
Thus we have the following condition: ¢/@3 is estimable if and only if
[C() Ccl1 C2 CK] = [Zfil c; C1 Cop ... Ck}

or equivalently if and only if ¢y = Zfi 1Gi-

Are the following estimable?

1. 7 — L;”:

yes
1
T2

dB=[0 1 -1/2 -1/2 0 ... 0] |7

T4

L TK

Thus we can see that 0 = ¢ :Zfilci =1-1/2—-1/2=0.
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3.5 Generalized Least Squares

2. u+ 1 yes

1

dB=[110 ... 0]|™

Thus we can see that 1 = ¢y = Zfil ¢ = 1.
3. 4 —T1: no

1

TK

Thus we can see that 1 = ¢ # Zfil c; = —1.

3.5 Generalized Least Squares
Suppose we have the following model

y=XB+¢€ E(e) =0 var(e) =o*V
where V is a n X n positive definite matrix.

We know that we can take the square root of V.= V1/2V/2 gince V is positive definite. We
also know that the inverse exists, so we have V=1 = V~1/2V~1/2Thus consider multiplying the
right side and the left side by V~1/2. Thus we have

V12y — v12X3 4 V-1/2¢

= z=B@B+n

We can see that E(n) = V~1/20 = 0 and that var(n) = V- /2VV~1/2 = y-12v1/2y1/2y—1/2 =
I. Thus we are back to our standard linear regression. Thus we have that

B=(B'B)'Bz=(XV1X)"X'V'ly
We can derive the following properties of our estimate:
1. E(3) = (X'V1X)"1X'V-IX8 =13
2. var(B) = 2(X'V1X)IX'VIVVIX(X'V7IX) ! = o2(X'V1X)~!

3. 7' =(Z-BR)(Z-BP) =(y — XB)'V !y - XB)
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4 Hypothesis Testing and Inference

4.1 Likelihood Ratio Test

Consider the following linear model
G:Y=XB+e e~N(0,0%)

Suppose that we wish to test the hypothesis H : A8 = ¢, where A is ¢ x p with rank ¢. The
likelihood function for G is

£(8,0%) = (2n0%) " eap |3 Iy - X6

It can be shown that the MLE estimates for 3 and o2 are B = (X'X) X'y and 62 = ||y —
XA3||?/n. Thus we have that

- n
L(B,5%) = (2n6%) " 2exp [—A
2lly — Xp[?

Iy — XB\F]

= (27r&2)_"/26xp [—g}

The next step is to find B g and &%{ which are the MLE estimates subject to A,C:I g =c. We can
use the Lagrange multiplier approach to solve this problem. If you use this method, we will get
that

B =B - (X'X)TAAX'X) AT (AB —¢)
Notice that this is the same estimate as in section 3.3. We will also get that 6%, = \ly—XB]?/n.
Thus we will get that

LBy, o%) = @ro%) " 2eap [T

Thus we can calculate the likelihood ratio test, which is given by

We will reject H if A is too small.

4.2 F-test

As stated in section 4.1, we know the the likelihood ratio test does not account for the difference
in precision of the elements of A3. One way to do this is to define a distance measure which
depends on the covariance matrix of A3. Consider using the following quadratic form:

(AB —c)(var(AB)) " (AB —c)
where var(AB) = 02A(X'X)"'A’. Let us define

RSS = |ly — X8| = (n — p)S?
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4 Hypothesis Testing and Inference

RSSp = |ly = XByl?
from section 3.3, we know that
By =B - (XX)TATAX'X) AT (AB ~ ¢)
Theorem 26
1. RSSy — RSS = |3 — yul* = (AB —c)[A(X'X) A"} (A - c)
2. E[RSSy — RSS] = c%q+ (AB — ) [A(X'X)" 1A' (AB —¢)
3. When H is true,

(RSSy — RSS)/qg = (AB—c)[A(X'X)'A'|"1(AB —¢)

F= RSS/(n—p) qS?

is distributed Fy ,—p.
4. When ¢ =0, F can be expressed in the form

n — pY/(PX — PH)Y

F =
g Y(I-Px)Y

Where Py = Px —Px, where Px, is the projection onto the variables that we are testing
if they are equal to zero.

Proof:

1.
RSSy — RSS = |ly = XByll* - [ly — XBI> = |ly = yull® — lly — 9l
We know that R R X R
ly = XBull* = lly = XB|]° = X8y - B)II?
Thus letting y = XB and yg = XBH, we have
ly = yull>=lly =3I = lya — 311

Thus we have
RSSy — RSS = |ly — yull® — [ly — 31

= HX(BH - ﬁ)HQ = (BH - :B)/X/X(BH - IB)
Using the least squares estimate of 3y, we have
(AB —¢)[A(X'X)TATTAX/X) T IX/ X (X'X) TTA/[AX'X) A THAB — ©)
Thus we have

RSSH — RSS = (AB —¢)[A(X'X)'A/| 71 (AB —¢)

2. Consider z = A3 — c¢. We know that z ~ N(AB — ¢, 02A(X'X)"tA’). From chapter 2,
we know that

E(RSSy — RSS) = tr(c?[AX'X) AT TAX'X) T A') + E(2) [AX'X) LA/ 7 E(z)
= tr(o0’1y) + (AB — o) [A(X'X) A1 (AB —¢)
= 0%+ (AB —¢)[AX'X)'ATTHAB — ¢)
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4.2 F-test

3. Under H, we know that A3 — ¢ ~ N(0,02A(X’X)"'A’). Thus by theorem, we know
that . P
RSSy — RSS  (AB—c)[AX'’X)'A']"HAB - ¢)

2
~X
o2 o2 q

‘We know that
(RSSy — RSS)/q

RSS/(n —p)
if (RSSy — RSS) 1L RSS. We know that RSSy ~ x3_, , and RSS ~ x2_,. We also

know that RSSy — RSS > 0. Thus by lemma 23, we know that (RSSy — RSS) 1L RSS,
so we have that

~ Fyn—p

(RSSy — RSS)/q
RSS/(n —p)

~ Fyn—p

4. We can see that .
yu =XBy
= [X(X'X)7'X' — (X'X) A/ (A(X'X)TTA) TTAXYX) T IX | y
= (Px —Px,)y =Puny
One can show that Py is idempotent and symmetric. Thus we have that
RSSH =|ly —XByl]’ =y (I1-Pn)y
Thus we also have that
RSSy — RSS =y'(1-Pp)y —y'I-Px)y =y (Px —Pn)y

Thus we can see that
n— pY/(PX - PH)Y

F =
¢ Y(I-PX)Y

O

Consider the following example. Let Uy,...,U,, be sampled independently from N '(u1,0?),
and let V1,...,V,, be sampled independently from N (uz, 02). Suppose that we wish to test the
following hypothesis:

Ho:pno= po

We can see that we have the following model:
U=pm+e (1=1,...,m)

Vi=pe+e (i=n1+1,...,n1 +n2)

where ¢; ~ N(0,02). Thus consider the following matrix representation of our model:

U, 1 0] €1
Un1 _ 1 0 |:N1:| + €n1

1%l 0 1 [pe €ny+1
_Vn2 1 _0 1_ _Gnl +na |

Thus our model is of the form y = X3 + €, where € ~ N(0,02I). We can also rewrite our
hypothesis in the following form:

AB=c=[1 1] [Zj = [0]
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4 Hypothesis Testing and Inference

We can see that

x'x=|" Y
0 no
Zn—ll Ui
(X'Y) = [ (o
2 iz Vi
Thus we have that 3 = (X'X)" X'y = [‘(ﬂ . From theorem 26, we know that our test statistic

has the following form

(RSSy — RSS)/q = (AB—<)[AX'X)'A1(AB—¢)

F = =
RSS/(n —p) q5?
We have that X
AB=U-V
A(X/X)ilA/ — i . i — N2 — Ny
niy no ning
ny+ng — 2 ny +ng — 2 ny +ng — 2
_ iU -0+ 32 (Vi V)2 (= 1)SE+ (n2 — 1)S3
ny +ng — 2 ny +ng — 2
Thus we have that ( L )2
Uu-V
F="g—g ~min—
ni no

4.3 Multiple Correlation Coefficient

We will start with trying interpret 8, in a geometric sense. Thus lets define V,,_1 = L(x1,...,Xp_1).
Let
xp =Pv,_ %X

x; = (I-Pv, )%,

Thus we can see that x, = %X, + f(j;. We can see that we are decomposing x,, into a part that
is in the linear span of {x1,...,%,—1} and a part that is not in the span. Notice that
1%, 117 = (%, %) = (%, — Py, %, %))
= <va§<;_> - <Pfo1xpv5(;_>
= (Xp, &$>

Since Pvpflxp =%, 1 f(lf. Let § = XB Thus we can see that
o oL 3ol 3 o1 S 12
<07 p> = <X/B7Xp> = </8pxp7xp> = 6p”xp H
. (0,%h)
— /Bp = —"
%512
Thus we can see that )ch measures the part of x; that contributes to the linear relationship of

y and x,, after accounting for the linear effects of x1,...,x,_1. Lets consider the covariance of

A r ~ a1
Bj and ;. In order to do that, we have to use the fact that 3, = %
p

4 <y75<]l>> _ (f(il)’var(y)fcjL (fcil)’azfcjL

PO (y,%;
cov(B;, Bi) = cov T - % 2 TR X
’ R TRFR )~ TRAPIRF R IRHPIRE P

52



We also know that

Thus we can see that

Since we know that

4.3 Multiple Correlation Coefficient

cov(By, Bs) = 0*(X'X);;!

(%)'%5
(X'X);' = = Tierers
T RIS
(a,b)
cos(a) =
[lalll[o]}

where « is the angle between a and b, we have that

where « is the angle between x and x]
the two estimates decreases.

Definition 35 Let Vi = {x1,..

Notice that y — y, € V,i- and yr — yo € V. Thus we have that
ly = Sol* = Iy = % + 3% — 9ol[* = lly — 9&l[* + |3 — Jol”

Definition 36 We define the Coefficient of Determination as

R?=r? =

SSE]C,1 — SSEk = y(I — ka_l)y — y(I — ka_l

Since we know that (y, %;)

o1 (eos(a)
R Tl T

_IPv,y =Pyl _ [I¥% = Jol|

ly =Pyl [y — ol

196 =%oll® _ | [y =3l _

ly — ¥ol[? ly — ¥oll
What is the contribution of xj, to the reduction of SSE? We know that

PRV P (y,x
((X%)lxé) 1(X%)/y Hxik

= Bi||%-]]?, we have

SSEy_1 — SSEy = 2|52

—Py)y =y'Pyiy

Thus as the angle increases, the covariance between

.Xp}. We define the Multiple Correlation Coefficient as

Consider the t-test for testing whether 8 — 0. We know the test statistic takes the following

form

_ b
sfe(Bk)

We will show the that the test statistic above has a relationship with the coefficient of deter-
mination. Let d = t?/(n — k). We will show that

Since we know that Bk =

k=

d

d—+
X0) T H(x) %)~ (ﬁ)’y, we have that

%)
g ()" %)~ (3) %) !

(1—R )+ R,

(X' X) g (n — k)
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4 Hypothesis Testing and Inference

From above, we know that (X'X);,! = W, and 6% = w. Thus we have
N N ~ _ N ~ _ N N /
YRR G ST YRR YPey
y(I—=Py,)y y(I—-Py,)y
Thus we have that
d Y'Pery/y(I=Pv,)y Y'Pery

l+d  y(I-Pv,)y +yPey)/yI-Px)y y(@-Pv, )y

We know that .
y'(Pv, , —Pi)y

y'(I-P1)y

2 _
Ry, =

Thus we have that

4y, = IPsY YO-Pyv)y y(Pv,, —Puy
d+1 o ot y/(I - ka71)y yl(I - Pl)y y’(I — Pl)y
_ YPyy LY Py, —Puy Y (Pv, , + Py —P1)y
y'(I-P1)y y(I—Py)y v(I-P1)y

Notice that Py, | + P:‘cﬁ = Pv,, thus we have

d y'(Pv, —P1)y
(1= R2_ 4 RQ_ — k — R2
d+1( k 1) k—1 y/(I_Pl)y k
. . . R2—R? . .
From a practical point of view, we can see that 1%[ = %. This can be interpreted as
k—1

the proportion of the variance explained by the k" predictor that is not explained by the k — 1
previous predictors. We can see that the proportion only depend on d.

Definition 37 Let vi,va,x1,...x, € R™. Let V = L(x1,...Xk), V1 = Pyvy, and vo = Pyva.
The Partial Correlation of vi and vo with the linear effects of x1, . ..Xy removed is

(Vi —V1,vy — V)

T = = =
VivEV T vy — ¥ [[[[ve — V|

Not that we usually always remove the linear effect of 1. If 1 € 'V then ry, v, v is scale invariant
and also invariant to translation.
Consider a multiple regression model of y on x1,...,x%. Let us define the following

Vi1 =L(x1,...,Xk-1)
Vi =L(x1,...,Xg)
Vi-1=Pv, |y
Vi =Pv,y
xé‘ =x, — Pv, x;
e=y Yk

We can see that ¥, = yr_1 + kat We can decompose y and xj, into orthogonal components
as follows:

Y = Yr1+ Bexit + (v — 95)

xp =Py, x+ x,ﬁ
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4.3 Multiple Correlation Coefficient

We can use this to find the correlation coefficient of y and x; when accounting for the linear
effects of x1,...,x;. Thus we have

. - Ienxt)  (Bixt e xi)
VX X1,y X1 N = =
Ty =yl |l 1Bexi + elll1xi|
Since e L Xé‘, we have
T Gt oxt) Bl
Vi Xk X1y Xk—1 — 1, 2 = —=
' 1B Fellllxgll 18k + e[k
Since e L xi-, we know that ||e + xi|| = ||e|| + ||x;||. Thus we have
. Brllxill Brllxi || _ BkHXLH
Vi Xk X1, Xp—1 =
1B+ llell Bt + el e eIy
Thus we can see that the partial correlation of y and x; with the linear effects of x1,...,x5_1
removed is —LYZk
142/ (n—k)
Lets look at the relationship between rx, x, v, and rx, x, v,, where Vi = L(x3,...,x;) and

Vo = L(xy4,...,Xx;). Thus we have

(x1 — (Pv,x1 + PXSLX1),X2 — (Pv,x2 + PX§X2))
HXl — (PV2X1 + PX§X1)||HX2 — (PV2X2 + Px§_X2)||

Tx1,x2.V] =

Letting xf =x; — Pv,x;, we have

L 1L

Xa7, X)X
— (Pvox; + Pux;) = X — <7|xf|>y3
3

We can also see that (x3,%;) = (x5, %" + Py,X;) = (x3,x;). Thus we have

I
P X3, X; )X
XZ_( V2X2+PX§X1)—XJ—— < 3 > 3

Z Itsal

WLOG, we can assume that ||x;|| = 1 for i = 1,2,3. Thus we have

, v = <X% <X£J’f’ X%>X§_’ Xé_ <X£J’>_7 X%>XZJ’,_>
X1,X2. =
e ||X1 <X3val> Hsz <X3>X2> H

(xtx5) — 20xd,x4) (xg, x3) + (xf, x4) (g, xg)
Vo by — 2032 + (xd x)2(d xd) — 20 35)2 + (xx4)?
bebod) — ) (b xg)
V1= Gadox)2 /1 — e xg)?
1

. 1 ool 1ol 1
Since we know that 7, x, v, = (X1, X3), Iy x5.Ve = (X1, X3), and rx, x, v, = (X3,X3), we
have

Tx1,%x2.Va — Tx1,x3.VaT'x2,x3.Va

Tx1,x2.V1 =
1—r2 1—r2
x1,x3.Va x2,%x3.V2
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4 Hypothesis Testing and Inference

4.4 Simultaneous Confidence Intervals and Regions

Consider the following model
y=XB+e e~N(0,0%0)

We know from previous classes that a confidence interval for 8; would take take the following

form ;
R 9 . 3
B+ tz—p‘72(x/x)jj1

Suppose we do this for each beta;. Thus even though the probability that any one confidence
interval contains the true 3; is 1 — «, the probability that all the confidence intervals contain
the true parameters is not 1 — a. Let E; be the event that the i 100(1 — ;)% confidence
interval contains the true value of 5. Thus we know that P(E;) = 1 — ;. Thus if we want the
probability that all confidence intervals contain the true parameter value, we have:

1—8=pMLE) =1—P(U~L E})

m m
>1-> PE)=1-> a
=1 =1

Definition 38 We call the value 6 the Familywise Error Rate.

4.4.1 Bonferroni

Consider the case when a1 = - -+ = «, = . Thus we have that
1-6>1—mao

Thus if we want § = 4, then we can pick a = %. Therefore, we can see that we will achieve this
Familywise Error rate at the minimum. This method is known as the Bonferroni Adjustment.
While this controls the FWE, this can become overly conservative when m is large.

4.4.2 Scheffe’s Method

Consider the standard linear model
y=XB+e e~N(0,0°)

Suppose we want to test A3 = ¢, where rank of A is ¢. Suppose we want to construct 100(1—«)
confidence intervals for making inference on a;/3,...,a,83, where A’ = (aj,...,a,). Thus we
know that

AB —c=N,(AB —c,s’A(X'X)TA)

Thus we know that

(AB-c—(AB-¢))(*A(X'X)'A) T (AB - c— (AB - ) ~ x

Simplifying, we have

A A

(A(B—B))(AXX)"A)"(A(B - B))

2
o2 Xq

If o is known, then {B](A(8 — B3))'(A(X'X)"'A")"H(A(B - B)) < x2,0°} is a 100(1 — a)%

(n—p)62
0—2

confidence interval for @. If o2 is not known, then we have that

o (AB-P)(AXX)'A)HAB-B)/a0>
(n—)6%/(0%(n—p))

~ X721—p' Thus we have

56



4.4 Simultaneous Confidence Intervals and Regions

Simplifying, we get

o (AB- ﬁ))/(A(X’fgzlA'W(A(ﬁ B p.

Thus we have that 8|A(3 — 8))(A(X'X)TA") "1 (A(B - 8))¢62 < Fyn_pa is a 100(1 — )%
confidence interval for (3.
Suppose we wish to make inference on h'¢p where ¢ = A3. Likewise, we have

(¢ — ¢)(AX'X)TA) Yo — ¢)
q5?

~ Fq,n—p,a
Let L = A(X'X)A’. Thus we have
l-—a=P (((2) - ¢)/(A(X/X)71A/)71((2) - d)) < qSQFq,n—p,a)

=P (b'L™'b < ¢5?Fyn pa)

h'b)?
=P <(h,L;1 < ¢S*F,n—pa Vh# o)

= P (((¢— ¢))* < B'(AX'X) " A')hgS? Fynpa ¥ #0)

—p (h’d) ch'e+ \/h’(A(X’X)—lA’)thQqu_pg Vh # 0>

Thu we arrive at our confidence intervals derived by using Scheffe’s Method

=P <h’AB chWAB+ \/ W (A(X'X)"1ANhgS2Fy 0 pa Vh# o)

4.4.3 Studentized Range Distribution and Tukey’s Method

Definition 39 Let z1,...,2; and u be independent random variables with z; ~ N(0,1) and
u ~ x2,(0). Then
¢ = max 1% — %]
1<i#j<k y/u/m
is said to have a Studentized Range Distribution with k and m degrees of freedom (denoted
Qk,m)~

Lemma 26 Let y1,...,y, and S? be independent random variables with y; ~ N'(u,ac?) and
”;—‘22 ~ x2,(0). Then we have that

max ‘yz _ y]’
1<i#j<k /aS

~ qkm
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4 Hypothesis Testing and Inference

Proof: We know that £=£ ~ A/(0,1). We also know that ”;—‘22 ~ x2,(0). Thus we know that

f
Yi— Yi—H
max Yo Vaol Qe
1<i#j<k mS? ’
o2 /
by definition. Since a > 0, we have

_ lyi —ysl lyi — v

max ———= = max —=5— ~qkm

C1<i#j<k o282 1<iAj<k Vvas
2
o

Suppose we have a one-way ANOVA model. Thus we have:

yij ~ N+ ai0®); > ai=0, i=1,....kj=1...,n

1 n 1 kK n
o . ~2 a7 )2
— nzyz], o = k(n—l)zz(yw yz.)
i=1 =1 j=1
1. — Xq (k(n_l))62 2
Notice that ﬁ ~ N(0,1) and =77 ~ Xji(n—1)- Thus by the lemma, we have
max i, — 5. — (@i — )| max Vnlji. — 4;. —(eiz o)l Gox(n)
1<i#j<k l&g 1<i#j<k g
n

Thus we have that

l—a= P( Joax Vnlgi. — g5 — (i — aj)] < &qk,k(nl),a>

=P (I~ = (= ) £ i Vi)

~

ag
\/>Qkk:(n 1), Vl#])

Thus a 100(1 — «)% simultaneous confidence interval for all pairwise comparisons is

:P<ai—aj€y_i_—y3_:t

N

_ _ o
yz’.—yj.if%k(n Da (#7
Lemma 27 Let ay,...,a; € R. Then we have
c
o — ] <b Vi,j < ]Zczaz| <bZ‘ d
=1 =
for all ¢;’s such that Zle c; = 0.
Thus we can use this lemma to get a confidence interval for all contrasts in the means.

o

1_a:P<|yi._yj._(i aj)| < = dkk(n—1)a Vi?éj)

- 3

k R
— P<|Zci(yi._ai)|<0‘ﬂckn 1), Z Vi s.t. Zci:(])

3
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4.5 Fieller’s Theorem

_P<ZCZO¢ZEZCZ% qk:kn 1) Z’M Ve; s.t. Zci:O)

Thus we have that a 100(1 — )% simultaneous confidence interval for all >-¥ | ¢;a such that
Zle ¢ =01is

k
Zczyz Qkkn 1), Z

[\D‘Q

4.5 Fieller’'s Theorem

Theorem 27 (Fieller’s Theorem) Let U and V be two normally distributed random vari-
ables, with means py and py, and variances v1102 and va90? and covariance vio02. Then a
100(1 — )% confidence interval for L2 is

1 U V12 tm /2 U 9V12 voU?
= i —— o 2= + —= 1-
A—9) |V T % \/ T 2 T (=gl

2 ~2.,2
tmaa V32

where g = =552, Note that m is the degree of freedom of &2.
Proof: Let W =U -0V =U — £& ~ N(0, o2v11 + 0260%v99 — 2002 v12). Thus we have that
w

\/5'2(1/11 + 921/22 — 291/12)

Thus we have that

WZ
l-a=P
“ <&2(V11 +927/22 — 291/12 - ma/2>
_p <(U — V)2 — 12, 082 (Vi1 + 0Pvay — 20013) > )

Let (0) = (U — 0V)? — 2, a/262(ul1 + 6?v99 — 20v13). Thus we have

(0) = (U? =17, p0°vm1) — 0QUV = 2t2, | 16%v12) + 02 (VZ =12 1067 v0)

If ¢(0) = 0, then we have

UV =242, ,6%v1s \/(QUV = 22 p67v12)2 — A(V2 — 2

mva/2OA'2I/22)(U2 — tfma/262ull)

9 pu—
2<V — tan a/QUQI/QQ)
v — tiw/Q&leg + \/—SUthn’a/262V12 + 4(t2 a2 5’21/12) + 4t72n’a/2(32(U2V22 +V2u) — 4(753'17&/25'2)2V11V22
N (V - tm a/20'21/22)
] 2 52,2
Letting g = 9522, we have
5202 2 G2v111,
UV —gV?72 + &tm,a/2v\/ 28015 + M + %21/22 + 11— w

(1 —g)V2

U—gVig+ &tm,a/2\/_2%’/12 + 91,1;122 + Lvm + (11— g)vn
(1-9)

59



4 Hypothesis Testing and Inference

1 U Vi | Otmay2 U gvi, U?
— b R —9— g2 | 2 1—
=9 |V 9om v izt 2 e+ (- g

Thus a 100(1 — )% confidence interval for L2 is

1
(1-9)

g Eg —2= 2 4 2 1—
v 90, % ylzt o +yave + (1 —g)vu

We will now show an application of Fieller’s Theorem. Consider the model

E(y) = fo + fi(zi — X)

Thus we know that

X'X = {3 Z?l(gi - :5)2]

and
n
X/ — |: 21:1 y'ii :|
Y - 2w
Thus we have
Bo y
|:B = E?:1(zi*ff)yi
1 > (zi—1)?
Suppose we observe gy, but not x that gave the value of y. Suppose we want to construct a

100(1 — )% confidence interval for x (this problem is called the inverse calibration problem).
Thus we have the following

y—y
Z?:l(ﬂfi_j)yi
2 (zi—7)?
Thus we can get a confidence interval for x —Z. Let U =y —gy and V = M We have
) 2im1(@i—T)

var(U) = o2 + %2 and var(V) = m Thus we have that v1o =0, v1; = 14 1/n, and

Vog = W Thus we can directly apply Fieller’s Theorem and get a confidence interval
i=1\"17
for x.
4.6 Case Deletion Diagnostics
Consider the following model
E(y) =X3; rank(X)=P
Thus we know that 8 = (X'X)"!X'y. Let
hi = (X(X'X) 1 X);; = e X(X'X) 1 (Xe;) = x4(X'X) 'x;

Definition 40 We call the elements h;; the leverage.
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4.6 Case Deletion Diagnostics

Notice that g; = (Hy); = Z?Zl hijy; = Z#i hijy; + hiiyi. Thus we have that

09 _ . 9%

— hy;
0y; 0y, !

Thus we can see that the leverage represents how changes in the i** outcome will effect the i*
prediction. Consider the i*" residual. we know that e; = y; — ¥;- Thus we have
cov(e) = cov((I-H)y) = (I - H)o*(I - H) = ¢*(I1 — H)

Thus we have
var(e;) = 02(1 — hy;)
Definition 41 We call the following quantity the Normalized Residuals:

€;

N 0,1
a?(1 — hy) .1
Definition 42 Let 6% = y/(};%)y. We call the following quantity the Internally Studentized Residuals:
€;
= ——
2(1 — hy)

Definition 43 Let 621. be the sample variance calculated without the it" observation. We call
the following quantity the Externally Studentized Residuals:

N

where (}(QZ.) =252 —x3B))-

Lets take a look into the difference between ,3 and B(i). We will first note that

n
X'X = ijxg» = x;X, + ZXjX; = X;X; + X/(i)X(i)
i=1 J#i

n
X'y = Z Xilfi = XilYi + ijyj =x¥i + X;)Y @)
i=1 J#
Thus we have that . 1
Bi = (XX —xx}) " (Xy — %)

X/X) 7 1x; x5 (X' X) !

Using Sherman-Morrison, we have that (X'X — x;x})"" = (X'X)~! 4 ( he . Thus
we have
R _ X'X ’1x,;x§ X'X)1
By = ((X/X) L+ X X) . h-(- ) > (Xy — xi9i)
X'X) 1x;x/(X'X)"1X X'X) 1 x;x (X' X) " xy
— (X/X)—lxy + ( ) Xle( ) y o (X/X)_lxiyi o ( ) Xle( ) Xiy
1 —hi 1 —hi
o X'X 71Xz‘ _
= IB + (1—)h [X;(X,X) 1X’y — (1 — h”)yl — h”yl]
Thus we have that
By = XX xiei

1 — hi
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4 Hypothesis Testing and Inference

Lets take a look at how &2 relates to &(21‘)‘ We know that

(n—p—1)83% =Y <ij;‘ <BW>>2

X’X) X;€; 2 hie; \2
_Z<€j hzz > :Z<€]+1ihm>

J# J#
n 2
=3 e+ hjiei \* o hiie;
; 1—hy 1 — hy
7=1
Since we know that e; — {Lf}fl = 1=—, we have that
(0 - 1)o Z L -
(1—hi)2 1—hy

=1

Notice that

= H(I — H)y = He — Zhijej = Zejhﬂ =0
=1 j=1
We also have that

Z hijhji = (H2)“ =H)y = hy = Z h?j =h
J j

Thus we have

2
ue €;

_1 — _
(n—p ‘7(1 ]z:;e + = ha? 1=y

2

= JZ_;(@?) + (1_672}%)2 [hii — 1]

2
A2 €

(n—p—1)d7) = (n—p)s 1,

Using this identity between &(22.) and 62, we can derive a relationship between t7 and r2.
2 ¢ _ e;(n—p—1)
(2 A 2
oo =hi) (1~ hi) (- p)o? - 5
ef(n—p—1) Jn—p-1)

~ 2 o 2
62(1 = hg) [” —p— &‘2(16‘ihn)] nTPTh

4.7 Leave-One-Out Case Diagnostics

Leave-One-Out case diagnostics deals with answering how the i** case affects the volume of the
confidence ellipsoid.

Definition 44 Cook’s Distance is defined as
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4.8 Lack of Fit

We can show that C; = =
Definition 45 DFITS is defined as

i8-8l

0 (iyhii

It also goes by the Welsch-Kul distance measure.

Definition 46 The Andrew-Pregibon test statistic is defined as

(n—p—1)5%[X], X5
(n—p)a?[X'X|

AP, =

We can interpret the Andrew-Pregibon confidence interval as the ratio of the areas of the
confidence intervals.

. 1 .
We know that 3; = fg{f”llg Thus we can see that var(8;) = 7“;12”2. We will show that
I i
3\ — a? 2 _ SSReg of x; on x;, i#j .
UCLT’(ﬁJ) o (nfl)varA(x]')[lfRJQ-] WhEIE R] B i (zji—aj.)? - Notice that

! 1) o
2 X] (Px(j) ) Xj

n
R? =
j 11
X (I-55) %
Thus we have
/
e N(Pxy)s )
J 11’ - 11’/
xp (T=50)% % (I-50) %,
Since we have that (n — 1)va7“A(xj) =X (I - 1{) X, we have
2 2
N 1
var(,@j) = ? = 7

(n — Dvar(x;)[1 — RJQ] (n— 1)va7“A(xj) 1- R?

Definition 47 We define the Variance Inflation Factor as

1
2
1 - R;

4.8 Lack of Fit
Suppose we have the following hypothesis to test
Ho:E(y)=XB=n
What happens if the model is misspecified in one of the following ways?
1. var(e;) are correlated

2. mean function is misspecified

3. error distribution is misspecified
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4 Hypothesis Testing and Inference

For 1 and 3, we would look at residual plots and q-q plots. However, lets take a closer look at
2.

Suppose E(y) = v # 1. Assuming - is known, let v, = Px7y. We will define the model residual
vector as v — vy = (I — Px)~. Define

A? =5(I=Px)y =97 = %70 = (v = %) (¥ = %0)
Now, we can see that
e=y-n=y-Pxy
E(e) = (I-Px)E(y) =~ —
ZE@%FﬂW’ﬂ—Px)%=¥ﬂ—PXh+U%n—M

Thus we can see that the E(MSE) = o? + 2. We can also see that the expected regression
sum of squares is

E(#'1) = E(y'Pxy) = Y70 + 07p
From this we can see that the total sum of squares will be

A+0*(n—p)+0%(p) +vov0 = Vv +o’n

Thus we can make an ANOVA table to summarize the results above:

source SS df E(MS)
Regression 7)1 D % +02

/ 2 A
Error e€e n—p a/ + iy
Total y'y n 1Y 4 o2

In order for us to derive a lack of fit test, the design matrix, X, needs to have some structure/
requirements. We will need enough replications at different locations of the design space. Fro
example, let there be g unique points in our design matrix. Let each point have n; observations.
Thus we have n; observations at X; = [@i1, T2, - .. ,xip]. Therefore our design and response
matrix should take the following form

_ _ - A
Y11 X1

/

1 X
y=|" x=1|7
Y21 X

/
_yngg_ _Xn_

In order for us to test whether the mean function is misspecified, we must have that g > p.
Now we can partition the sum of squared error into the following two parts.

g nr g nr
o= (wr—0u)" =D > (Ur = Tor + T — o)
r=1 t=1 r=1 t=1
g nr g
=> > W7 2+ZZ . —%:B)?
r=1t=1 r=1 t=1

Notice that )}, (M)2 ~ x2 _1(0). Thus we have

g
[zz e 0| =2 [0 30 (e’ ] ~ (n- g)o*
t=1 r=1t=1

r=1

=E

64



4.8 Lack of Fit

where n = Y9_, n;. Since we know that E(e’e) = (n — p)o? + A, we know that
g np

E(Z ZT(ZJT - XTB)Q) = E(e,e) - E(Z Z(ytr - 37.7*)2) =(9- p)UQ +A
r=1 t=1 r=1 t=1

Thus we can summarize these results using an updated ANOVA table

source SS df E(MS)
Regression 0’ D % e
SSPE g:l Z?Ll(ytr - Q.T)Q g—p o?
SSLOF Z?:l Z;Zl(gr - XTB)2 n—g o? + %,g
Total y'y n 7;77 + o2

(SSPE stands for sum of squares - pure error, and SSLOF stands for sum of squares - lack of

fit). Consider the following matrix
L, — - o .. 0
0 L,—- 2 .. 0
11/
0 R
Thus we can write SSPE = y’Uy. Since SSE = y'(I — Px)y, we know that SSLOF =
y'(I-Px — U)y. Since UX = 0 and (I — Px)X = 0,under Hy, we have

SSPE =y'Uy = (y = XpB)'U(y — XB) ~ x5_4(0)
SSLOF =y'(I-Px — U)y = (y — XB8)'(I- Px — U)(y — X8) ~ x;_,(0)
Thus we can use the following F-test to test the following null hypothesis:
Ho:E(y)=XB=n

. _ SSLOF/(g —p)
F* = ~Fy
SSPE/(n—g) gmpng
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5 Optimal Design

5.1 Introduction
Consider the following linear regression model
y=XB+e e~N(0,T)

Optimal design deals with answering the following question: Given a fixed ample size N, how
do we select N points from the design interval X to observe the response y in some optimal
way. In many linear regression settings, this comes down to minimizing the variance of your
estimates in some way. Consider the following example.

Consider the simple linear regression model on the interval X = [a,b]. What is the best design
for estimating both the slope and intercept?

Since we want to minimize the variance of the slope and intercept, we will look at minimizing
the confidence ellipse for 5y and (1. We know that the ellipsoid will take the form

(B-B)(X'X)"1(B-B) < ¥(a)

Thus we can minimize the axes of the ellipsoid A\; and Ay (where A\; and Ay are the eigenvalues
of (X’X)~1). One way to minimize this is to minimize det((X’X)™!) since we know that the
determinant is the product of the eigenvalues. In this case, we can see that

X/X — n Z?:l L
T Y T

Thus we can see that

1
det((X'X)™1) = >
nd iy i — (i @)
WLOG, we can assume = € [—1,1] since 3 g : [a,b] — [—1, 1] that is an isomorphic transforma-
tion. It is easy to see that
/ -1 1
det(XX) ) = —— L >
nY i i — (i i)

Notice that this happens when n/2 of them are —1 and n/2 of them are 1. Therefore, the best
design for estimating both the slope and intercept is to take equal observations at both ends of
the interval.

S

What if we are only interested in estimating the intercept? This means that we want to minimize
the variance of 5. We know that

var(fBy) = 2(X'X)

g
Y el — (S @), (Sw)
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5 Optimal Design

Thus we can see that the variance is minimized whenever Y ; z; = 0. Thus any symmetric
design around 0 is optimal for estimating the intercept only.

What if the goal is to estimate the mean response given at a point xq inside [a,b]? Thus we
want to minimize the variance of y(xg). We know that

g(z0) = [1 z0] (X'X) ' X'y = x(X'X) X'y
Thus we have
var(g(xg)) = O'2X0(X,X)_1X/X(X,X)_1X6 = O'2X0(X/X)_1X6

anyzlxz—l@glxm [t =) [—ZZZ _25:1%} Lclo]

S0 2003 e = TrEi )
i=1 ny.

n Z?:l 5612 - (Z?=1 z;)? i—1 ?:1 96? - (Z?ﬂ ﬂfi)2

_ Z?:l(fﬁi - xO)Q _ Z?:l (vi —7) + (T - fUO))Q _ E?:l(xi - 33)2 +n(z — 5U0)2

n > i (zi — T)? ny iy (zi —7)? a n iy (zi —T)?

_ 2

no Y (zi—7)?

We can see that they are equal when = x¢. Thus any design around zq is optimal.

1
n

What if we are interested in estimating the mean response given at a point xy outside of [a, b]?
We have the following expression for the variance of §(xg):
1 (i‘ — 130)2

var(§(wo)) = 0+ s "7

Note that

({l_? — x0)2
iz (@i — )
WLOG, we can again assume that X € [—1,1]. Thus we know that —1 < z < 1. By putting
all observations at the endpoints of the design window, we can achieve any T by adjusting the
proportion of observations at each end point. Notice that we can also maximize the variance
(denominator) by putting all observations on the end of the design window. Thus let 6 be the
proportion of the observations put on 1 and (1 — §) be the proportion on observations put on
—1. Thus we can see that & = 2§ — 1. Thus we have

minxvar(g(zg)) = minx

(Z —x0)? (26 — 1 — x¢)? - (26 — 1 — x¢)?
S (i —2)2 on(2—20)2+ (1 —6)n(28)2  n(4— 86 — 462) + (1 — §)ndd?
. (25 —1- $0)2
4n(§ — 62)
0 4n(0—6%)4(20 — 1 — mg) — (20 — 1 — )*4n(1 — 26)
a5 16n2(5 — 02)2

 4An(26 — 1 —x0) (400 — 6%) — (20 — 1 — o) (1 — 26))
16n2(6 — 62)?
We can see that the derivative equals zero when 4(6 — 62) — (26 — 1 — z0)(1 — 20) = 0. Thus we
have

46— 6% — (20 =1 —20)(1 —20) = 2200 + 1 + 29 =0

Thus we have that
1+ x

2$0

5=

for all zg € R.
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5.2 Optimal Design Theory

5.2 Optimal Design Theory

Definition 48 An Exact Optimal Design tells you exactly how many doses you need, where
these dose levels are, and how many subjects to assign to each of these doses in some optimal
way.

Definition 49 An Approximate Optimal Design tells you how many doses you need, where
these dose levels are, and roughly how many subjects to assign to each of these doses in some
optimal way.

We will mostly deal with Approximate Optimal Designs in this section. When considering an
Approximate Optimal Design problem, we usually ask the following questions:

1. How many points are needed to optimize the criterion? (call this number k)

2. Where are the optimal design points? (z1,...,x € [a,b])

3. What is the optimal proportion of the total observations to take at each of these points?
(wl, N ,wk)

We will denote a generic approximate design by &:

To ... Tk

e=|.}

wp wy ... Wk

where 0 < w; < 1fori¢=1,...,k and Zle w; = 1. For fixed N, the implemented design, & ,
assigns approximately Nw; subjects to x; for i =1,..., k.

Consider the following model
y(@) = f'(2)B + e(x)

where e(x) ~ N(0,02/\(x)) where \(z) is some known positive function. We will also assume
that f/(z) € R% It can be shown that the Fisher information matrix for a k-point approximate

design £ is proportional to
k

M(&) =Y Aai)wif(z:) f (z:)

=1

when k£ > d. We know from previous classes that

cov(B) o< M~1(€)

For a nonlinear model, we have E(y) = f(z,3). Thus we can replace f(z) in the above formula
with the gradient of f(x,3) with respect to 3. Now that we have found a formula for the
covariance of our regression parameters, what does it mean to minimize the covariance?

Definition 50 We say that & achicves D-Optimality if € minimizes |M~1(€)|, or equivalently
M (€).

Definition 51 We say that €& achieves A-Optimality if & minimizes tr(M~1(€)).

Definition 52 We say that & achieves I-Optimality if € minimizes the variance over a re-
sponse region (X). Thus we have

where R = [ f(z)f'(x)dx.
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5 Optimal Design

Our goal in optimal design is to find & such that it is optimal among all possible £&. We can use
the following theorem to help check/ prove that some design is D-Optimal.

Theorem 28 (Equivalence Theorem for D-Optimality) &* is D-Optimal if and only if
Aaz) f'(x)M L&) f(x) —d < 0 for all x € X, with equality at the design points. In this case, d
is the dimension of f(x).

When dealing with these problems in real life, sometimes the optimal design is not actually
desired. This could be due to some uncertainty in your assumptions, or perhaps due to other
reasons. In this case, it may be useful to characterize how much worse this model is compared
to the optimal model. We call this the Design Efficiency.

Definition 53 We define the following quantity as A-efficiency:

(M)
A-ell&) = 3 e

where £* is the optimal design.

We can interpret this as sum of the variances of the parameters under the design &, divided by
the sum of the variances of the parameters under the optimal design, £*.

Definition 54 We define the following quantity as D-efficiency:

M (6)] )”P
M (&)

D-eft€) = (

where €* is the optimal design.

We can interpret this as some ratio of the area of the confidence ellipsoid of the parameters
under the design &, divided by the area of the confidence ellipsoid of the parameters under the
optimal design, £*.

Thus if € has an efficiency of 0.5, € needs to be replicated twice in order to do as well as £*.
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6 Shrinkage Estimators

6.1 Ridge Regression

Ridge regression can be used as a means for improving the estimation of regression coefficients
when the predictors are highly correlated. We can also prove that the prediction accuracy with
the ridge estimate. The ridge estimate solves the following problem

min|ly — XBgll> + kl1Bgll3 k=0

R

We can show that the solution to this minimization problem will have the following form
Br= XX+ k)" X'y
Using the spectral decomposition of X'X (X'X = TDT'), we have
Bp= XX+ k) ' X'X(X'X)" X'y
= (X'X + k) 1X'X}3
= (T(D + kI)T)"'TDT'3
=T(D +kI)"'T'TDT'3
= T(D + kI)"'T'TDT'3
=T(D + kI)'DT'3

_ Zp: . it
—~"di+k

We can now look for the covariance of Bp.
cov(Br) = *(X'X + kD) ' X'X(X'X + kI) !

=o’T(D 4 kD) 'T'TDT'T(D + k1)~ 'T
= o?T(D + kI)"'D(D + kTI)~' T

= 02 Zp: Lt,«t-
=1 (dZ + A)2 o
Now lets take a look at E(8p) — 3.

E(Bgr) — B =T(D+kI)"'DT'8 - 3

d:
= Ca— I 4
.Z <di + k ) tZtZB

=1

P
k
= — E t;t!
P (di + k) 1/6

We can define the Mean Squared Error of 85 as MSE = (bias)(bias)’ + Cov. Thus we have
that

MSE(Bg) = T(D+k)'D+1)T'B8T(D+kI)"'D+ )T +o*T(D+ kD) 'D(D + k1)~ 1T’

Thus we can use the following to compare B to B p using any one of the following metrics:
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6 Shrinkage Estimators

1. tT(COU(,BR)) — tT(COU(B))
2. tr(MSE(Bg)) — tr(MSE(B))

3. |IXBr — X8B3

6.2 Stein Estimation
Suppose that we have that
y ~ No(XB = p,0°)
Thus we have that i = Pxy, 62 = y'(I — Px)y, and rank(X) = p. We know that
1&]1” = |[Pxy|[® = y'Pxy
We have that
E(|al*) = p'u + o*tr(Px) = ||ul|* + po? > [l

This suggests that at least some elements of the estimate are too large. Thus consider shrinking
the estimate in the following from @ = cfi, where 0 < ¢ < 1. It is apparent that this will be
biased, but is it possible to choose a ¢ such that i has a smaller standardized square error loss?

|l pl?

L, (. 0%) = 1H—

We can define the risk as the averaging of the standardized square error loss.

- El|f — p||?
R(f1, (1, 0%)) = Bl — pll” 5 I
We can see that

CEpp-2p/p+pn pp4po® =2 p+p'n )
_ - _ - _

R(f, (p,0%))
Lets take a look at the risk function of the proposed estimator

_EBRp 2@ p+pp  Pplpt Ppo’ —2ep’pt p'p  Ppo’ + (1 —c)?|pll?
o2 o2 o2

R(i, (p,0%))

Lets minimize the above risk to try and find what ¢ should be

0
3¢ (00 + (1= 0)||ul*) = 2p0® — 201 = ) |ul[* = 0

Thus we have that the optimal is

N 17 R
TP po? = [l +po?

However, we do not know ||u||? since we do not know p. Thus we can consider estimators of
the following form
_ (1 c6? ) X
p=1-—5]|h
s

Lemma 28 1. If X ~x2, E(X 1) =15, n>2.

n—2’

2. If u ~ N,(0,1) and k ~ Poisson(||6||%/2), then
) E () = E (5=
) B (i) = ()
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6.2 Stein Estimation

Proof:

1. We know that

& 1
E X—l _ / 71}71/2—26—36/26&5
) o 272T(n/2)

Since we have that I'(z + 1) = 2I'(x), we have

1 > 2 —2/2-1 _—a/2
— n z/2
2(n — 2) /0 9n=2/20(n — 2/2)" c

Since what is inside the integrand is the pdf of a chi-squared distribution with n — 2
degrees of freedom, we know that it integrates to 1. Thus we have

for n > 2.

2. a) We will start with the fact that if V'|k ~ XZJF%(O), then V ~ x2(|[0]). By definition
of a non-central x?, we know that ||u|[* = /i ~ x2(||0]|?). Thus we have

1 1
E(——)=E k S
() == (Bt == (o)
by part 1.
b) Let u' = (u1,...,up,) and 8’ = (64,...,6,). Thus we have
E (1> _ / L /200 (a-0) g,
el o

0 1 1 0 ’
Ip(_ Lt Yo [ 19 ~/2m-0u-0y
96; (!Iull2> /’u(?@'e H

_//‘1—9z ~(1/D(1=0) (u-0) g,
o

® o= () == (e

From part (a), we know that E (W) = E(
following

Thus we have that

m), thus we can look at the

0 ll6112/2 2k
O 1 0 Z e 6]
90; \p+2k—2) 00; & (p+2k—2)kl 2F
Z i(2k — [16]1%)el191°/2 2] 6] |
10112(p + 2k — 2)k! 2k

) 1 0, (2k— 0| _ )
(%) 20, <p+2k7—2> IGE (p+2k—2 k oisson(]|0]]7/2)

Thus from (x) and (*x), we have that
-0 0 2k — (0]
£(Ho0) 0 g (2o l0l)
[l 161> \p + 2k — 2

(£f?) s (ea=rrtect)

Thus we have
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6 Shrinkage Estimators

1 _
:1—HmFE< 2>-9E<“ f)
[[#e]] Iz
1 00 _ (2k—||0|]?
=1-10|°E - E
1017 (=) ~ = (52 23
g% N\ _g(_ P2
p+2k—2 p+2k—2

=(“r ) = (raa)

Thus we have that

O

Using this lemma above, we show that if @ = (1 - ﬁ) i1, then R(f1, (p,0?)) = p — [2¢(p —

2) —c? ";f;Z]E (p+21,€72>, where k ~ Poisson(||p||?/20?).

We know that

o2

i — 2 10— o — e
R(fr, (u,0%) =E (”““”) -F IRk

Bl b 2o g (B s (1)

o2 o2

We know the following:

Ellp—pl® _
1. = =p

_\a2
2. =B \2_ (0)

3. E42 = o2

A A A n— U4 n— 0'4
4. E6* = var(6?) + (E62)% = 2((n_f)))2 1ot = (Zpt2ot (fﬁi))

Let Z be an orthonormal basis for C(X). Let u = ZTIy and 0 = % Then we know that

u~ N(6,I). Since p € C(X), we know that
w=Pxu=2272)""2'n=27n=076

fp=Pxy=727(Z'2)"'2'y =2Z'y = 0Zu

Thus we have that ) )
|[el]= 16| 1 1

202 2 7 l@l? o?lul]?

and that . L .
(p—p)'i _ (u—0)u

e e
oY) =2 () -2 (e s)

1 1 1 1 1
<!|ﬂ||2> o? (I\UI!2> o? <P+2/€—2)

Therefore, we have

and
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6.2 Stein Estimation

Thus we have that

R(a, (1,0%) = p %@-2y+8“‘p+2ﬂﬁ( =

n—p p+ 2k —2
If we minimize this with respect to ¢, will get that

«_(p=2)(n-p)

¢ n—p+2

It can be shown that this provides a smaller risk function that the least squares estimate for
all 4 and o?. Thus we can say that f is uniformly better than f in terms of the risk function.
Thus the James Stein estimator is the following

Q—O—Cﬁ>ﬂ
Tl

(p—2)(n—p)

where ¢ = —pt2
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7 ANOVA and Linear Mixed Effects Models

7.1 One-way ANOVA
The typical model for a one-way ANOVA model is
Yij=p+1+te; i=1,...,a, 7=1,...,n
where Y7 | 7, = 0 and ¢;; = N(0, 02). Suppose we want to test the following
Hy:m=mn=--=7,=0

HltTi#Tj lgz#jéa

First we will find the least squares estimate. We can see that we have to minimize the following

DD i —n—m)

i=1 j=1

function:

We can show that the least squares estimate will lead to
L=7. Ti=0.—9. i=1,...,a

We know that SSTO = > %, >0 (yij — 7..)%. we can decompose this into SSE and SSTr in
the following way

a n a n a n a n
MY i =9 =D (=040 -0 =D Wi —u)*+ Y (W —9.)
i=1 j=1 i=1 j=1 i=1 j=1 i=1 j=1
let y;. be the vector of responses for treatment group 7. Thus we have

n 11’
_ I-=r)
Z(yij - yi.)2 = YQ.THYLUQ
J=1

Since y; ~ N(1(p + 73), 021), we know that > i (Yig — i) ~ 02x2_1(0). Thus we have that

SSE = Z Z(yij - @i.)Q ~ 02X¢21(n—1)

i=1 j=1
We can also let )
w0 ... 0
11/
U— 0 = 0
0o o 11/

Thus we have that, under Hy,

SSE = y/(I - U)y = yl ) yoo ~ U2X§(n71) (0)
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7 ANOVA and Linear Mixed Effects Models

Thus we know that SSTr =y’ (U — 171/)y Thus we have

11 (U — 1)
SSTr=y' (U~ W)y =y (02 M=) yo? ~ o®xi_1(0)

We can also find the expected value of SSTr. Thus we have

Ey/(U- Yy = w0 - (@ - 12 =03 w2 020 - 1)
y Ny =k L Na—ni:17‘i o (a

Thus we know the following facts
1. E(SSTr)=n>¢ 72 +0%(a—1)

2. Under Hy, gn=YMSE X;(n—l) (0)

o2

3. Under Hy, (a_lzﬂ ~x2_4

Thus we can test Hg using the following F-test:

((a —1)MSTR)/(0*(a—1))  MSTR o

B = Gt =1)M5E) (P am=1))) ~ MsE ~ Fatatm-y

7.2 Mixed Effects ANOVA Model

Suppose we treat the difference in treatment effect as a random variable. Thus we would have
the following model:

Yij :N+Ti+€ij§ €ij NN(O,O’?) TZ'NN(O,O'Z) €ij _U_Ti
Suppose we want to test the following hypothesis
Hy:02=0, Hi:02>0

We can see that
Yi=p+Ti+E;
J=p+7+e

Thus we can see that

€ — € )2
5B =3y -5 =33 O

Therefore, we can see that SSE ~ afxi( We can also see that we have

n—1)"

SSTr = ZZ(@ — gj)2 = ZZ(% — T4+ €. — €)2

Under Hy, we know that 7; — 7 = 0. Thus we have that
SSTr=>Y Y (& —&’= ni:(g- 2= Z Mgz
G

Since ;'27?2 ~ x3(0), we have that SSTr ~ x2_;(0). Thus to test Hy, we can use the following
test statistic:

g+ _ (aln=1)MSE/(o%a(n - 1))  MSE
" (a—1)MSTr/(c*(a—1))  MSTr e DleD
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7.2 Mixed Effects ANOVA Model
Now, how do we estimate 02? Lets look at the following

nz 2;

E(SSTr) =

Since we know that

and

E (Za: (Ti_T)2c72> = o02(a—1)
0_2 T T
i=1

T

Thus we know that
E(SSTr) = n(a —1)o2(a —1) + (a — 1)o?
Since E(M STr) = %, we have that
E(MSTr) = no? + o?
Since E(MSE) = o2, we have that

o MSTr—-MSE
UT

n

Can we derive a distribution for 62? Not really, but we can define a distribution on the quantity
known as the intraclass correlation

2
s

o2 +o?
This quantity is important because it reflects the proportion of the variance of an observation
that is the result of differences between treatments. We can show that

MSTr/(no? + o?)

g

p:

B ==0sEj2 "~ Fatetny
Thus we have
MSTr o2
l-a= <Fa—1,a(n—1),1—o¢/2 < MSE TLU72_ _7_0_62 < Fa—l,a(n—l),a/Q)
MSE o? MSE
= mFa—l,a(n—l),l—am < no? + o2 < MSTTFa—l,a(n—l),a/Q
_<M5Tr 1 <n03+062<MST7“ 1 )
MSE Fy 1 atm-1)1-a/2 o? ~ MSE Fy_14mn-1),a/2
MSTr 1 no?  MSTr 1
_ —-1< 5 < -1
MSE Fafl,a(nfl),lfa/Q O¢ MSE Fafl,a(nfl),a/Q

_ (1 <MSTr 1 1) _or_1 (MSTr 1 1))
n\ MSE Fa—l,a(n—l),l—a/? B 052 ~n\ MSE Fa—l,a(n—l),a/Q

Notice that

Thus we have that

1 L < o2 < U
— =
1+L = 02402~ 1+U
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7 ANOVA and Linear Mixed Effects Models

7.3 Rules for Expected Mean Squares

Suppose we have the following model:

Yijk =+ 7+ B+ (78)ij +€ijis i=1,...,a; j=1,...,b; k=1,...n

in this model, we have that 7; is a fixed effect, 3; is a random effect, and (73);; is also a random
effect. Thus, using the following rules, we can derive the expected sum of squares
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1.

The error term in the model, €5 ., is written as ;. ), where m is the subscript that
denotes the replication.

. For each term in the model, divide the subscripts into the following three classes:

a) live - subscripts that are present in the term and are not in parentheses
b) dead - subscripts that are present in the term and are in the parentheses

c) absent - those subscripts that are present in the model, but not in that particular
term

For example, in (7);;, ¢ and j are live and k is absent. In e(ij)k, k is live and ¢ and j are
dead.

. The number of degrees of freedom for any term in the model is the product of the number

of levels associated with each dead subscript and the number of levels minus 1 associated
with each live subscript. Thus for (73);; is (a —1)(b — 1), and €5y is ab(n — 1).

. Each term in the model either has a variance component or a fixed factor associated with

it. If an interaction contains at least one random effect, the entire interaction is considered
to be random. Thus the variance component for 3 is o3 and the effect of the fixed effect is

represented by the sum of squares of the model components associated with that factor,
it

a—1

divided by the associated degrees of freedom. Thus the effect for A is

. To obtain the expected mean squares, prepare the following table. There is a row for each

model component and a column for each subscript. Over each subscript, write the number
of levels of the factor associated with that subscript and whether the factor is fixed (F')
or random (R). Replicates (associated with €) are always considered to be random.

a) In each row, write a 1 if one of the dead subscripts in the row components matches
the subscripts in the column:

F F R
a b n
Factor 1 j k
Ti
Bj
(78)i5
€ape 1 1

b) In each row, if any of the subscripts on the row component match the subscript in
the column, write 0 if the column is headed by a fixed factor and a 1 if the column
is headed by a random factor

F F R
a b n
Factor 1 j k
T 0
Bj 0
(tB8)i; 0 0




7.3 Rules for Expected Mean Squares

¢) In the remaining empty row positions, write the number of levels shown above the
column heading

F F R

a b n

Factor 1 j k
T 0 b n
ﬁj a 0 n
(Tﬁ)z‘j 0 0 n
E(ij)k 1 1 1

d) To obtain the expected mean square for any model component, first cover all columns
headed by live subscripts on that component. Then, in each row that contains at least
the same subscripts as those on the component being considered, take the product
of the visible numbers and multiply by the appropriate fixed of random factor. The
sum of these quantities is the expected means square of the model component being

considered.
F F R
a b n
Factor 1 j k MSE
2
Ti 0 b n|a?+bn (%:jli ) + nazﬁ
Bj a 0 n ana% + o2
()i 0 0 =n nazﬁ + o2
e 111 ol
Suppose we want to test if Hy : y = - -+ = 7, using the expected means calculated above. Thus
we can try to isolate the term > Tiz. Thus we will reject Hy if
MSA

VSAB - Fo1(a-1)0-1),0
Suppose we want to test Hy : 0/23 = 0. Thus we would reject Hy if
MSB
VSE - Fy 1 abn-1),a
Suppose we want to test Hy : crzﬂ = 0. Thus we would reject Hy if

MSAB
VUSE Fla—1)(-1),(n-1)ab,a

Consider the following model:

Yijel = 1+ 7 + B + ap + (78)i + ()i + (Ba)ji + (TBa)ijr + €ujny

where A is fixed, and B and C are random.

F R R R

a b ¢ n
Factor i j k 1 |EMSE)
Ti 0O b ¢ n|ben (asz) + enoZg 4+ bnoZ, +noZg, + ol
Bj a 1 ¢ n acnag + cnaf 5+ anaga + naz o T o2
o a b 1 n abnaa + bnaza + anaga + na? o T 0’62
(78)ij 1 1 ¢ n cnozﬁ + nozﬁa + 02
(Ta) ik 1 b 1 n|bno, + nazﬁa + o2
(Ba) jk a 1 1 n anaga + nazﬁa + o2
(tBa)ir, 1 1 1 n nagﬂa + o2
€(ijk) 1 1 1 1)|¢?
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7 ANOVA and Linear Mixed Effects Models

Suppose we wish to test Hy : 71 = --- = 74 = 0. We can see from the expected MSEs that we
cannot isolate the >~ 72 term. Thus no exact F-test exists. However, we can use an approximate
test. Consider the following

a —

2
1 =MSA+ MSABC = E(y1) = ben <Z7—1> + cnazﬁ +bno?, + nagﬂa + 0?2 +n035a + 02

o = MSAB + MSAC = cnos +nols, + 02 + bno’, +nols, + o’

Thus we can see that v, — 2 = ben (%:jf ) Therefore we can use the following approximation
to test Hy
o MSA+ MSABC approz
MSAB + MSAC P

However, how do we find p and q?

Theorem 29 (Satterthwaite’s Approximation) Let u; ~ x?%, fori=1,....k. Let U =
Zfil a;u;. Then we can say that U ~PPT% 2 where

. (Caiw)?

aqQ = —FQ

> (o)

Thus in the above question, we know that the degrees of freedom associated with MSA are
a — 1, the degrees of freedom associated with M SABC are (a —1)(b—1)(c — 1), the degrees of
freedom associated with MSAB are (a — 1)(b— 1), and the degrees of freedom associated with
MSAC are (b—1)(c—1). Thus we have

(MSA+ MSABC)?
MSA%/(a— 1))+ (MSABC2/((a—1)(b—1)(c —1)))

p=
(

N (MSAB + MSAC)?
1% (MISAB((a— D(b— 1)) + (MSACY/ (b — 1)(c— 1))

7.4 Linear Mixed Models
Suppose we have the following model
y=XB8+Zu+e €e~N(OR);, u~N(0OD); ulle

Lets use the MLE framework to find the MLE of 5 and BLUP of u. We know that y|u ~
N(XB + Zu,R). Thus we can get the joint distribution of y and u in the following way:

o) = Fylyllfu(w) o eap { =5y = X0~ 2Ry - X8 - 2w feap { D}

1
Lo —3 [(y —XB-Zu)R '(y — X3 — Zu) + uD 'y
Differentiating with respect to 3 and u, we get

(1) gg x X'R7!XB+XR1Zu—- XRly
88 o —1 —1 ' —1 —1
(2) 8—uo<ZR Zu+ZR XB-ZR 'y+D 'u
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7.4 Linear Mixed Models

We can rewrite it in the following way

X'R1X XR™'Z Bl  [XRly
ZR'X ZR'Z+D7' |u| |ZR 'y

These set of equations above are known as ”Henderson’s Normal Equations”. Let B and u be
the solutions to these equations. From the second equation, we have

ZR'XB+ (ZR'Z+D Ha=7ZR"1y
i=(ZR'Z+D H) 1ZR (y - XB)
Notice that V = cov(y) = cov(XB + Zu + €) = Z'DZ + R™!. We can show that V7! =
R ! -R'Z(ZR'Z + D ')"'Z'R~!. Thus looking at the first equation, we have
X'R'XB+X'R'Zu=XRly
XRIXB+XRIZ(ZR'Z+D ) 1ZR(y - XB) = X'Rly
X' (RIT-RIZ(ZR'Z+D ) 1ZR HXB-X(R'-RZ(ZR'Z+D H)1ZR Hy =0
X'VIXBXV~ly
Thus we arrive at the MLE of 3
B= XV 1X)'X'Vv-ly
To obtain u, we have
(ZR'Z+D HDZ =ZR'ZDZ + 7
=ZR ' (ZDZ +R)=ZR'V

Thus we have
DZ'V!=(ZR'Z+D H'ZR™!

Therefore, we have .
u=DZ'V iy -Xp)
Lets now derive the variances and covariances of the estimates. We know that cov(u) = D and
cov(e) = R.
cov(y,u') = cov(XB + Zu + €,u’) = Zcov(u,u’) = ZD

cov(B) = (X'VIX) X'V cou(y) VX (X'VIX)
Since cov(y) = V, we have that
cov(B) = (X'VIX)!

Let P =V ! - VIX(X'V~IX)" X'V~ Then we have

1. PP=P
2. PX=0
3. PVP =P

We can re-write pt as
p=DZ'VYY - Xp3)

=DZ' (V! - v IX(X'VIX)"IX'V )y
= DZ'Py

Thus we can see that
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7 ANOVA and Linear Mixed Effects Models

1. cov(f) = DZPVPZD' = DZ'PZD
2. cov(B, 1) = cov((X'V7IX)"1X'V-ly, DZ'Py) = (X'V'X)"'X'V-'VPZD
= (X'VIX)"'IX'PZD =0
since PX=0 = X'P =0

3. cov(B,u) = cov(X'V1X) ' X'V-ly u) = (X'VIX) ' X'V lcov(XB + Zu + €,u) =
(X'V-IX)"1X'V-1ZD

4. cov(t,u) = cov(DZ'Py,u) = DZ'PZD
5. cov(t—u) = cov() + cov(u) —2cov(u;u) = DZ'PZD + D — 2DZ'PZD = D - DZ'PZD
6. cov(B, 1 —u) = cov(B,1) — cov(B,u) = —(X'V1X)"'X'V-1ZD
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8 Multivariate Statistics

8.1 Graphical Gaussian Models
Let Y ~ N(0,X). We can specify the joint distribution by factoring it in the following way.
P(Y) = PW1)P(Y2|Y1)... P(Yo|Y1, ..

We can use a DAG or Bayesian Network to represent the dependencies

Figure 8.1: A Bayesian network or DAG
We can express this DAG as the following linear models:
Vi=0+m, m~N(0,d) di=0n

Y = aoiyr + 12, 1m2 ~ N(0,dz) da = var(Ya|Y1)

Ys = aniy1 + az2y2 + 13, 1m3 ~ N(0,d3) ds = var(Y3|Ys, Y1)

i—1

Y, = Zaijyj +ni, i ~N(0,d;) d;i =var(Y;|Y1,...

Jj=1

Since the n; completely specify P(Y;|Y1,...
the n; are independent. Thus we can write our model as the following:

(1) Y=AY +n, n~N(0,D) D =diag(dy,ds,...

We also know that A will have the following form:

0

0
0
0

,Y;_1), and since the densities factor, we know that
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8 Multivariate Statistics

From (1), we have
I-A)Y=n = var(Y)=I-A)"'D@I-A)T
I-A)"'DI-A)T=x
= LDL' = LD'?D'?L/ = LI/

We can see that this is the Cholesky decomposition. How do you get A;; from 3?7 We know
that

Vi=aYei+n

From this, we know that
EYi[Y<] =aYo

From properties of a Normal distribution, we have
EYi[Y<] = py, + 2(i,<i)2(_<li,<i)(y<i — Bye) = B, <i) B(<i<iy Y<i
Thus we can see that

EYi[Ya]=a)Yoi =3B, Yoo = aj =32

(<i,<1) (<1,<1)

Y<i] ) |:E(<i <1) 2(<i i)
var = ' ’
< [ Y; Bi<i) (i)

where

We also know that

var(Yi|Y<i) = 3 — 2(i,<i)2(<1i7<i)2(<i,i) =d;

Therefore, we have a way to find A and D. One important property of this model is that if
a;; = 0, then y; is conditionally independent of y; given y1,...,y;—1,¥j+1,-..,%i—1. Thus, this
gives us a way to induce sparsity from graphs.

Definition 55 A matriz A is sparse if it has at most m non-zero elements in each row.

Alternatively we can think of this as no node having more than m parents.

Figure 8.2: A Bayesian network of 7 variables with at most 3 parents (or "neighbors”) for each
node.

Since A is sparse, this means that (I — A) is sparse. However it is important to not that
(I— A)~! need not be sparse. Since (I— A)'D(I - A) = X, we know that X1 will be sparse.
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8.2 Matrix Normal, Inverse Wishart, and Bayesian Regression

8.2 Matrix Normal, Inverse Wishart, and Bayesian Regression

Let Y € R™ "™ be a response matrix with m dependent variables and n observations. Let
X € n x p. How would we perform linear regression using this response matrix?
We can vectorize Y and then perform standard linear regression

Y1 X 0 ... 0 Bl €]

Y2 0 X ... 0 ,6 €9 ~

=1 . : .2 +| .| = Y=(1IvX)B+e
Ym 0 0 ... X| |8, €en

How do we model e?
Suppose we modeled it such as:

cov(ej,ej) =wijV i=1,....m j=1,...,m
Thus we have
U11V U12V “. UlmV
U21V UQQV e UQmV
cov(e) = {cov(e;, e;)} = ) } . =U®V
U1V Um2V ... UmmV
Definition 56 U ® V is called the kronecker product.
We can explore the properties of the kronecker product by looking at
(x'® A)(y ® B)
1B
y2B -
= [;l?lA oA ... an] ) = Z:ciyiAB = (xX'y)AB
: i=1
ynB
We can generalize this by looking at
(A®B)(C®D)
Al ® B
= : ([c*1®D c.o®D ... C*T®D])

a,. @B
We can see that the (i, j)*" block is
(ag* ® B)(C*j ® D) = (ag*c*]‘)BD

Therefore we have that
(A®B)(C®D)=AC®BD

Other properties that we have is that
. (A®B)=A"1'eB™!
2. Cholesky Decomposition (LsL’y ® LgLy) = (La ® Ap)(L/y ® L)

3. (A®B)=A'"®B

87



8 Multivariate Statistics

4. PATAP% ® PgTpP’, = (Pa@Pp)(Ta® TB)(Pfq ® P,B)
5. If A € R™™ and B € R™*", then det(A ® B) = det(A)"det(B)™
6. If A and B are positive definite, then A ® B is positive definite.

Back to the model, we have

Y=IX)B+e e~N(0,URYV)

Let z=Y — (I® X)B. Thus we have

1 1,
p(Z) X Wewp {—2Z (U & V)Z}
1 1,
SDENE erp {—2z (U® V)z}
Assuming B = 0, we have that
_ 1 1 / —1 —1
p(vec(Y)) = S NREIRE exp {—2vec(Y) (U eV )vec(Y)}

Therefore, we have vec(Y) ~ N(0,U @ V).
Definition 57 The term vec(Y) (U™t ®@ V™ Hvec(Y) is known as a Tensor System.
We will digress slightly to look at products of the following form:
(A @ B)vec(X) = vec(C)
where X = [Xl Xn].

a1B ap2B ... a1,B X1 2?21 aijBXj
(A ® B)vee(X) = : : : N :

n
amB ameB ... amnB| |x, ijl amiBx;
We can see that

n n
Z aijij = B(Z ainj) = BXaz*
j=1 j=1

Therefore, we have that

BXal*
BXag*
(A ®@ B)vec(X) = ) = vec(BXA')
BXa,,.
Another Digression: lets now look at
vec(Y) vee(X)
where Y = [yl ym] and X = [xl xm}. Thus we have that

m

m m m
vee(Y) vec(X) = Zygxi = Z tr(yixi) = Zﬁ“(xi}’é) = ”’(Z x;y;) = tr(XY’)
i—1 i—1 i=1

i=1
Going back to the multivariate normal model, we have that

vec(Y) (UL @V hvec(Y) = vee(Y) vee(VIYU ™) = tr(VIYUTYY!) = tr(Y' VYUY
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8.2 Matrix Normal, Inverse Wishart, and Bayesian Regression
Definition 58 The Matriz- Variate Normal is a random matriz Y € R™*™  denoted Y ~
MN(M,V,U), such that

1
p(Y) = (2 )nm/2[U[/2 [V [m/2 erp

1
{—Qtr((Y -M)V Y - M)U—l)}
From this, we can see that if Y ~ MN(M,V,U) < vec(Y) ~ N(vec(M),U ® V).

We can now discuss the Bayesian conjugate Matrix Normal-Inverse Wishart model. Suppose
we have the following setup
Y=XB+E

where Y € R™ X € R"*P, B € RP*™ and E € R"™™. Let E ~ MN(0,1I,,,3). Lets take a
look at the LS-Estimate of this model. We have that

Xa L (Y - XB)Va = (Y — XB,Xa) =0 Va
= a(Y — XB,Xa) = ((Y — XB)a,Xa) =0 Va
— X/(Y - XB) =0
— X'XB=X'Y
Thus we have B = (X’X)"1X'Y.

Definition 59 The Inverse- Wishart Distribution is a probability distribution valid over
the cone of positive definite matrices. If 3 has a Inverse-Wishart distribution, denoted 3 ~

IW (v, S), then it has the following pdf:

Sl//2

1
2 - (tetD)/2 - -1
T (0]3) |2 e;vp{ 2tr(SE )}
where S, % € RP*P,

Definition 60 We say that (B,X) is distributed Matriz-Normal Inverse- Wishart , de-
noted (B,X¥) ~ MNIW(B,X|M,V,v,S), if

p(B,X) =IW(XZ|y,S) x MN(B|M, V,X)
Consider the following Bayesian Model
YB,X ~ MN(XB,I,,X)

B|S ~ MN(C,V,¥)
3~ IW(v,S)

We can see that B, X is distributed Matrix-Normal Inverse-Wishart. Suppose that we wish to
draw posterior samples from (B, X|Y). We know that

p(B,XE[Y) o< p(X)p(B|X)p(Y|B, %)

1 1
o [N 2oy {—2tr(SE_1)} =P 2exp {—2tr((B -V iB- C)E_l)}

< S 2eap {—;tr((Y _ XB)/(Y — XB)zl)} (8.1)
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8 Multivariate Statistics

1
= |x|wAmtEntR) 2egy {—2tr((S +C'VC+ Y'Y)z—l)}

1
X exp {—Qtr((Blle +B'X'XB - (Y'X + Clvl)B)zl)} (8.2)

= |p| ) 200, {—;tr((S +CVTlC+ Y'Y)zl)}
X exp {—;W((B’(V_l +XX)B — (Y'X + C’V_l)B)E_l)} (8.3)

let M= (V1 +XX')"! and m = X'Y + V~IC. Thus we have

1
— ‘2|—(l/+m+1+n+p)/2exp {2t7’((s + C/v—lc +Y,Y)2_1)}

X exp {—;tr((B’l\/IlB - m'B)Zl)} (8.4)

— ‘2|7(l/+m+1+n)/26xp {_;tr((s + Clvflc + Y/Y . m/Mm)Zl)}
x |27 2exp {—;tr(((B —m)M (B - m)z—l)} (8.5)

Thus we can see that X ~ IW (v+n,S+C'VIC+Y'Y —m'Mm) and B|Z ~ M N(Mm, M, X).
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