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1 Linear Algebra

1.1 Vectorspaces

Definition 1 A vectorspace satisfies the following:

1. X + Y = {xi + yi} ∈ Rn

2. 0 ∈ Rn

3. α ∈ Rn =⇒ αx ∈ Rn for any x ∈ Rn

R is called a field.

Definition 2 Consider V ⊆ Rn. V is a subspace if it satisfies the following:

1. V is non-empty

2. X,Y ∈ V =⇒ X + Y ∈ V

3. X ∈ V, α ∈ R =⇒ αX ∈ V

From this definition, we can see that the vector space also has the following properties:

1. x ∈ V =⇒ (−1)x = −x ∈ V

2. x+ (−x) = 0 ∈ V

If S and T are subspaces of V , then S ∩ T = {x ∈ S and x ∈ T |x ∈ V } is a subspace, and
S + T = {x+ y|x ∈ S, y ∈ T} is also a subspace.

Definition 3 A sum is a direct sum if w ∈ S
⊕
T = u+ v for a unique u ∈ S and v ∈ T .

Consider S = {(x, 0, 0)|x ∈ R} and T = {(0, y, 0)|y ∈ R}. Thus we can see that for any
w ∈ S + T = {(x, y, 0)|x, y ∈ R}, we have a unique representation in terms of w = u+ v, where
u ∈ S and v ∈ T . Therefore, S + T is a direct sum (S

⊕
T ).

Theorem 1 Let S and T be subspaces of V . S + T is direct iff 0 = u+ v =⇒ u = v = 0

Proof: ( =⇒ ) Suppose S
⊕
T . Notice that 0 = u+ v = 0 + 0 where u ∈ S and v ∈ T . Since

direct sums are unique, this means that u = v = 0.
( ⇐= ) Suppose 0 = u + v =⇒ u = v = 0. Let w ∈ S + T . Thus, by definition, w = u1 + v1

for some u1 ∈ S and v1 ∈ T . Suppose w = u2 + v2 for some u2 ∈ S and v2 ∈ T . Thus, we have

0 = w − w = (u1 − u2) + (v1 − v2) =⇒ (u1 − u2) = (v1 − v2) = 0

by the hypothesis. Therefore, we have that u1 = u2 and v1 = v2. Therefore, there is a unique
representation, and S + T is a direct sum. �

Lemma 1 S
⊕
T iff S ∩ T = {0}.
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1 Linear Algebra

Proof: ( =⇒ ) Suppose S ∩ T = {0, a} for some a 6= 0. Since S ∩ T is a subspace, we know
that −a ∈ S ∩ T . Therefore, 0 = a− a. Thus we have a contradiction from the theorem above.
( ⇐= ) Suppose S ∩ T = {0}. Let 0 = u + v for some u ∈ S and v ∈ T . Thus we can see that
u = −v. Since u ∈ S, −u = v ∈ T , so v ∈ S ∩ T . Thus since S ∩ T = {0}, u = 0 and therefore
v = 0. Thus we can see that 0 = u+v =⇒ u = v = 0. Therefore, by the theorem above, S+T
is direct. �

Definition 4 Let V = {v1, . . . , vn}. V is a linearly independent set if a1v1 + a2v2 + · · · +
anvn = 0 =⇒ a1 = · · · = an = 0. Otherwise V is a linearly dependent set.

Lemma 2 If V = {v1, . . . , vn} is a linearly dependent set with v1 6= 0, then ∃j ∈ {2, . . . , n}
such that:

1. vj ∈ span{v1, . . . , vj−1}

2. span(V \ {vj}) = span(V )

Proof: Suppose {v1, . . . , vn} is a set of linearly dependent variables. Let v1 6= 0. Therefore,
we have

a1v1 + a2v2 + · · ·+ anvn = 0

There exists a aj 6= 0 for 2 ≤ j ≤ n. Choose the largest j such that aj 6= 0. Thus ajvn =
−a1v1 − · · · − aj−1vj−1. Therefore, by definition, aj ∈ span({v1, . . . , vj−1}). Thus we have
proved (1).
Let A = {v1, . . . , vn}. Let Ã = A\{vj} where vj ∈ span({v1, . . . , vj−1}). Thus we have to prove
that span(Ã) = span(A). It is obvious that span(Ã) ⊆ span(A). Thus, we have to prove that
span(A) ⊆ span(Ã). Suppose that x ∈ span(A). Thus

x = a1v1 + · · ·+ anvn

Since vj ∈ span({v1, . . . , vj−1}), we know that vj = c1v1 + . . . cj−1vj−1.

x = a1v1 + · · ·+ aj−1vj−1 + ajvj + · · ·+ anvn

x = a1v1 + · · ·+ aj−1vj−1 + aj(c1v1 + · · ·+ cj−1vj−1) + · · ·+ anvn

x = (a1 + ajc1)v1 + (a2 + ajc2)v2 + · · ·+ (aj−1 + ajcj−1)vj−1 + aj+1vj+1 + · · ·+ anvn

Therefore, we can see that x ∈ span(Ã). Therefore we can see that span(A) ⊆ span(Ã). There-
fore we have that span(A) = span(Ã) (2). �

Lemma 3 The linear dependence lemma uses the lemma above to find a linearly inde-
pendent set of vectors. We can start by searching through the set of vectors to look for a
vj ∈ span{v1, . . . , vj−1}. If we find one, then we can remove it from the set without changing
the span of this set. We can continue in this iterative fashion until we do not find a vj such
that vj ∈ span{v1, . . . , vj−1}. Once this happens, we have a linearly independent set.

Using the linear dependence lemma, we can explore the connection between linearly independent
sets and spanning sets. We will prove that spanning sets must have at least as many elements
as a linearly independent set.
Let V be a subspace. Let U = {u1, . . . , um} be a linearly independent sets such that U ⊆ V .
Let W = {w1, . . . , wn} be a spanning set such that span(W ) = V .
Suppose that m > n.

6



1.1 Vectorspaces

Let A0 = W . Thus we can see that span(A0) = V . Let A1 = {u1}∪A0. Since {u1} ∈ span(A0),
by the linear dependence lemma, we can find a wj1 ∈ {w1, . . . , wn} such that span(B1) =
span(A1) = V , where B1 = A1 \ wj1.

Let A2 = {u2} ∪ B1 = {u2, u1, w1, . . . , wj−1, wj+1, . . . , wn}. Since u2 ∈ span(B1) = V , we can
find a wj2 ∈ {w1, . . . , wj−1, wj + 1, . . . , wn} such that span(B2) = span(A2) = span(B1) = V
where B2 = A2 \ wj2.

We can continue in this fashion until we have An = {un} ∪ Bn−1 = {un, . . . , u1, wi} for some
wi ∈ W . Since span(Bn−1) = V , un ∈ spanV , and since un ⊥ ui for all i 6= n, we can see that
span(Bn) = span(An) = V , where Bn = {un, . . . , u1}.
Consider un+1 ∈ V . Therefore, un+1 ∈ span({un, . . . , u1}). Therefore, un+1 = a1u1 + . . . anvn.
Therefore a1u1+· · ·+anvn−un+1 = 0, so by definition, {u1, . . . , un} is not a linearly independent
set (which is a contradiction). Therefore, we can see that spanning sets must have at least as
many elements as a linearly independent set.

Definition 5 A basis is a linearly independent spanning set

Thus, from the definition we can see that every basis must contain the same number of elements.
Let B1 = {u1, . . . , um} and B2 = {v1, . . . , vn} both be bases for V . Since B1 is a linearly
independent set and B2 is a spanning set, we have m ≤ n. Since B2 is a linearly independent
set and B1 is a spanning set, we have n ≤ m. Therefore, we have m = n.

Definition 6 The dimension of a subspace is the number of vectors in a basis for that sub-
space.

Let V1 be a subspace of V , where dim(V ) = n. Let B1 = {u1, . . . , um} be a basis for V1. We
can extend B1 to a basis for V . All we have to do is find a v1 ∈ V such that v1 6∈ span(V1).
Therefore, {u1, . . . , um, v1} is a linearly independent set. If n = m+ 1, then {u1, . . . , um, v1} is
a basis for V . If not we can continue in this fashion until we have a basis for V . If V ⊆ Rn, we
can append the vectors {e1, . . . , en} to {u1, . . . , um}, where ei is a vector of zeros except for the
ith element which is 1. We can use the linear dependence lemma to find a linearly independent
subset. The resulting set will be a basis for V .

Lemma 4 Let V be a vector space and let S and T be subspaces of V . Thus we have dim(S +
T ) = dim(S) + dim(T )− dim(S ∩ T ).

Proof: Let {u1, . . . , ur} be a basis for S∩T . Extend the basis so that {u1, . . . , ur, w1, . . . , wm}
is a basis for S and {u1, . . . , ur, v1, . . . , vn} is a basis for T . Therefore we have dim(S) = m+ r
and dim(T ) = n+ r.

We need to prove that {u1, . . . ur, w1, . . . , wm, v1, . . . vn} is a basis for S + T . By construc-
tion we can see that it is a linearly independent set. Thus have to prove that it spans
S + T . Let x ∈ S + T . Thus by definition, x = w + v for some w ∈ S and v ∈ T . Since
w ∈ span({u1, . . . , ur, w1, . . . , wm}) and v ∈ span({u1, . . . , ur, v1, . . . , vn}), we have that x ∈
span({u1, . . . ur, w1, . . . , wm, v1, . . . vn}). Therefore, {u1, . . . ur, w1, . . . , wm, v1, . . . vn} is a basis
for S+T andm+n+r = dim(S+T ) = dim(S)+dim(T )−dim(S∩T ) = m+r+n+r−r = m+n+r
�

Definition 7 Two vector spaces V1 and V2 over the same field F are isomorphic if there is a
map ψ from V1 to V2 such that:

1. ψ(x) is linear, meaning that ψ(x+ y) = ψ(x) +ψ(y) and ψ(αx) = αψ(x) for all x, y ∈ V1

and α ∈ F
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1 Linear Algebra

2. ψ(x) is a one-to-one and onto function

The map ψ(x) is called an isomorphism.

Theorem 2 Two vector spaces V1 and V2 over the same field F are isomorphic if and only if
they have the same dimension.

Proof: (⇐= ) Let {x1, . . . , xn} be a basis for V1 and {y1, . . . , yn} be a basis for V2. Consider
x ∈ V1. Thus x = a1x1 + . . . anxn for a unique set of a1, . . . , an. Define the map

ψ(x) = a1y1 + · · ·+ anyn

Clearly, we can see that ψ(x) : V1 → V2. We can also see that ψ(x) is linear. Since each element
in V1 can we expressed in such a way (with unique a1, . . . , an), we can see that ψ(x) is a both
one-to-one and onto function.
( =⇒ ) Now suppose that V1 and V2 are isomorphic. Let φ : V1 → V2 be an isomorphism. Let
{x1, . . . , xn} be a basis for V1.
Claim: {ψ(x1), . . . , ψ(xn)} is a linearly independent set.
Note that ψ(x) = 0 ⇐⇒ x = 0 (If not, suppose ψ(x) = y. Then ψ(x + 0) = ψ(x) + ψ(0) 6= y
which contradicts that ψ(x) is linear.) Therefore, we have:

= 0α1ψ(x1) + . . . αnψ(xn) = ψ(α1x1 + · · ·+ αnxn)

Thus we have,
α1x1 + · · ·+ αnxn = 0 =⇒ α1 = · · · = αn = 0

Therefore we can see that {ψ(x1), . . . , ψ(xn)} is a linearly independent set. Therefore we know
that dim(V2) ≥ dim(V1).
We can do the same by defining an isomorphism, ψ2 : V2 → V1. Thus we will get dim(V1) ≤
dim(V2). Therefore dim(V1) = dim(V2).

�

Consider Rn and Pn = {p(x) = a0 + a1x
2 + · · ·+ an−1x

n−1|ai ∈ R}. Rn and Pn are an example
of two vector spaces that are isomorphic.

1.2 Inner Product Spaces

Definition 8 An inner product, 〈., .〉 : V × V → F satisfies the following:

1. 〈x, x〉 ≥ 0 ∀x

2. 〈x, x〉 = 0 ⇐⇒ x = 0

3. Bilinear: 〈αx+ βy, z〉 = α〈x, z〉+ β〈y, z〉 and 〈z, αx+ βy〉 = α〈z, x〉+ β〈z, y〉 where γ is
the complex conjugate of γ.

4. 〈x, y〉 = 〈y, x〉

Thus we can say that 〈x, y〉 =
∑
yixi = y∗x where y∗ is the adjoint of y (defined later). For

x, y ∈ Rn, y∗x = y′x = x′y.

Definition 9 The norm (length) of a vector is
√
〈x, x〉 = ||x|| =

√
x∗x.

We can introduce the notion of an angle between two vectors in a vector space.

〈x, y〉 = x∗y = ||x||||y||cos(θ) =⇒ cos(θ) =
〈x, y〉
||x||y||
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1.2 Inner Product Spaces

Definition 10 We call two vectors X and Y orthogonal (X ⊥ Y ) iff 〈x, y〉 = 0

Thus we can see that two vectors are orthogonal if cos(θ) = 0 or θ = π/2.

Theorem 3 (Cauchy- Schwarz) Let u and v be any two vectors in a vector space V . Then

|〈u, v〉| ≤ ||u||||v||

Proof: Consider ||u − 〈u,v〉||v||2 v||
2. By axioms of norms, we know that ||u − 〈u,v〉||v||2 v||

2 ≥ 0. Thus

we have

||u− 〈u, v〉
||v||2

v||2 = 〈u− 〈u, v〉
||v||2

v, u− 〈u, v〉
||v||2

v〉

= 〈u, u〉 − 2〈u, 〈u, v〉
||v||2

v〉+ 〈〈u, v〉
||v||2

v,
〈u, v〉
||v||2

v〉

= ||u||2 − 2
〈u, v〉2

||v||2
+
〈u, v〉2

||v||2

= ||u||2 − 〈u, v〉
2

||v||2

Since ||.|| ≥ 0 (axiom of norms), we have

||u||2 − 〈u, v〉
2

||v||2
≥ 0

Thus we have

||u||2||v||2 ≥ 〈u, v〉2 =⇒ ||u||||v|| ≥ |〈u, v〉|

since ||u|| and ||v|| are non-negative �

Consider the statistical model

y = βx

where β is a scalar. We know that

||y − βx||2 ≥ 0

by the axiom of norms. Consider the estimated β, β̂. Thus we have

||y − βx||2 = ||y − β̂x+ β̂x− βx||2 = ||y − β̂x||2 + 2〈y − β̂x, β̂x− βx〉+ (β̂ − β)||x||2

Thus, we can se that

||y − β̂x||2 = ||y − βx||2 − 2〈y − β̂x, β̂x− βx〉 − (β̂ − β)||x||2

If set β̂ such that 〈y − β̂x, β̂x− βx〉 = 0, then we have that

||y − β̂x||2 = ||y − βx||2 − 2〈y − (β̂ − β)||x||2 =⇒ ||y − β̂x||2 ≤ ||y − βx||2 ∀β

〈y − β̂x, β̂x− βx〉 = 0 =⇒ (β̂ − β)〈y, x〉 = (β̂ − β)β̂||x||2

Thus we can see that β̂ = 〈y,x〉
||x||2 is the optimal solution such that the residuals are minimized

(||y − β̂x||2 ≤ ||y − βx||2 ∀β).

Lemma 5 An orthonormal set is also a linearly independent set.
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1 Linear Algebra

Proof: Let {u1, . . . , un} be an orthonormal set. Therefore ui ⊥ uj for all i 6= j. Let a1u1 +
· · ·+ anun = 0. Consider

〈ui, a1u1 + · · ·+ anun〉 = 〈ui, 0〉 = 0

Since ui ⊥ uj for all i 6= j, we have

〈ui, a1u1 + · · ·+ anun〉 = 〈ui, aiui〉 = 0

Therefore, since ui 6= 0, we know that ai = 0. Since this holds for 1 ≤ i ≤ n, we can see that
a1 = · · · = an = 0. Therefore, by definition, {u1, . . . , un} is an linearly independent set. �

Lemma 6 If V ⊥ {u1, . . . , um}, then V ⊥ span({u1, . . . , um}).

Proof: Let u ∈ span({u1, . . . , um}). Thus, u = a1u1 + · · ·+ amum.

〈v, u〉 = a1〈v, u1〉+ · · ·+ am〈v, um〉 = a1(0) + · · ·+ am(0)

Thus V ⊥ u. Therefore, V ⊥ span({u1, . . . , um}). �

Let {u1, . . . , um} be an orthonormal set. Let x ∈ span({u1, . . . , um}). Let x = c1u1 + · · ·+cnun.
we can see that 〈ui, x〉 = 〈ui, c1u1 + · · · + cnun〉 = 〈ui, ci, ui〉 = ci. Therefore we can rewrite x
as

x = 〈x, u1〉u1 + · · ·+ 〈x, um〉um
Thus

〈x, x〉 = 〈〈x, u1〉u1 + · · ·+ 〈x, um〉um, 〈x, u1〉u1 + · · ·+ 〈x, um〉um〉

=
m∑
i=1

m∑
j=1

〈x, ui〉〈x, uj〉〈ui, uj〉

=
m∑
i=1

〈x, ui〉〈x, ui〉〈ui, ui〉 =
m∑
i=1

〈x, ui〉2

Now we can look into the property of vectors orthogonal to a subspace. Let x ∈ V . Let
{u1, . . . , um} ⊆ V be an orthonormal set. Let u = 〈x, u1〉u1+· · ·+〈x, um〉um (note this is known
as the projection (defined later) of x onto span({u1, . . . , um})). Clearly u ∈ span({u1, . . . , um}).
Let v = x− u.

〈u, ui〉 = 〈〈x, u1〉u1 + · · ·+ 〈x, um〉um, ui〉 =
∑

j = 1m〈x, uj〉〈uj , ui〉 = 〈x, ui〉

〈v, ui〉 = 〈x− u, ui〉 = 〈x, ui〉 − 〈u, ui〉 = 〈x, ui〉 − 〈x, ui〉 = 0

Therefore we can see that v ⊥ span({u1, . . . , um}). We say that v ∈ U⊥. Is U⊥ a subspace?

1. Notice that 〈0, u〉 = 0, so 0 ∈ U⊥.

2. Let x, y ∈ U⊥. Therefore, 〈x, u〉 = 0 and 〈y, u〉 = 0. Therefore by the linearity of inner
products, 〈x+ y, u〉 = 0, so x+ y ∈ U⊥.

3. Let α ∈ F . Therefore, 〈αx, u〉 = α〈x, u〉 = α(0) = 0. Therefore αx ∈ U⊥.

Therefore, we can see that U⊥ is a subspace.
Let {v1, . . . , vn} be a basis for V . Can we find an orthonormal basis for V ?

Theorem 4 (Gram-Schmidt) Let {v1, . . . , vn} be a basis for V .
Define u1 = v1

||v1|| , ui = wi
||wi|| , where wi = vi −

∑i−1
j=1〈vi, uj〉uj for 2 ≤ i ≤ n.

Then {u1, . . . , un} is an orthonormal basis for V .
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1.2 Inner Product Spaces

Proof: We need to show

1. {u1, . . . , un} is an orthonormal set

2. span({v1, . . . , vn}) = span({u1, . . . , un})

(1) We can immediately see that ||ui|| = 1, so we are left to prove that ui ⊥ uj for i 6= j.
Consider

〈u1, w2〉 = 〈u1, v2 − 〈v2, u1〉u1〉 = 〈u1, v2〉 − 〈v2, u1〉〈u1, u1〉 = 0

Therefore, we can see that u1 ⊥ w2 =⇒ u1 ⊥ u2.
Now suppose that ui−1 ⊥ {u1, . . . , ui−2}. Thus we need to prove that wi ⊥ {u1, . . . , ui−1}. Let
1 ≤ j ≤ i− 1

〈wi, uj〉 = 〈vi −
i−1∑
k=1

〈vi, uk〉uk, uj〉 = 〈vi, uj〉 − 〈vi, uj〉〈uj , uj〉 = 〈vi, uj〉 − 〈vi, uj〉 = 0

Thus we can see that wi ⊥ {u1, . . . , ui−1} =⇒ ui ⊥ {u1, . . . , ui−1}. Therefore, we can see that
{u1, . . . , un} is an orthonormal set
(2) We can see that v1 = r11u1 where r11 = ||u1||.
Continuing in this fashion, we have v2 = r12u1 + r22u2 where r12 = 〈v2, u1〉 and r22 = ||w22||.
For the ith step, we have vi = riiui+

∑i−1
j=1 rjiuj where rji = 〈vi, uj〉 and rii = ||wii||. Therefore,

we have vi ∈ span({u1, . . . , ui}).
Therefore, we have span({v1, . . . , vn}) = span({u1, . . . , un}). �

Lemma 7 Using the Gram-Schmidt process, we can derive the QR Decomposition X = QR
where Q is an orthogonal matrix and R is an upper triangular matrix. Let X = [v1, . . . , vm] ∈
Rn×m and Q = [u1, . . . , um] ∈ Rn×m. Thus we have

X = [u1, . . . , um]


r11 r12 . . . r1m

0 r22 . . . r2m
...

...
. . .

...
0 0 . . . rmm


Let U = {u1, . . . , uk} ⊆ V be an orthonormal set. We can extend this orthonormal set to an
orthonormal basis for V , by the following:

1. extend U to a basis for V

2. Apply Gram-Schmidt to the expanded basis

Let V be a vector space with dim(V ) = n. Let S ⊆ V be a subspace of V . Let {u1, . . . , um}
be an orthonormal basis of S. We can extend the basis of S to a basis of V such that
{u1, . . . , um, vm+1, . . . , vn} is an orthonormal basis of V .

Lemma 8 {vm+1, . . . , vn} forms an orthonormal basis for S⊥.

Proof: Let v ∈ S⊥ ⊆ V . Thus we have

v = c1u1 + · · ·+ cmum + cm+1vm+1 + · · ·+ cnvn

Since v ⊥ {u1, . . . , um}, we know that 0 = 〈v, ui〉 = ci for 1 ≤ i ≤ m. Therefore, we have

v = cm+1vm+1 + · · ·+ cnvn

11
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Therefore, we can see that v ∈ span({vm+1, . . . , vn}). Therefore S⊥ ⊆ span({vm+1, . . . , vn})
Now suppose that v ∈ span({vm+1, . . . , vn}). Thus, by definition, we have

v = am+1vm+1 + · · ·+ anvn

〈v, ui〉 = am+1〈vm+1, ui〉+ · · ·+ an〈vn, an〉 = 0

for 1 ≤ i ≤ m since ui ⊥ vj (m+ 1 ≤ j ≤ n). Therefore, we can see that v ⊥ span(u1, . . . , um),
so by definition v ∈ S⊥. Therefore span({vm+1, . . . , vn}) ⊆ S⊥.
Therefore we can see that {vm+1, . . . , vn} spans S⊥, and since it is part of an orthonormal basis
(of V ), we know that it is orthonormal itself. Therefore {vm+1, . . . , vn} is an orthonormal basis
for S⊥ �

From this proof, we can see that dim(S⊥) = n−m and dim(S) = m.

Lemma 9 Let V = S + T . If dim(V ) = dim(S) + dim(V ), then V = S
⊕
T .

Proof: Let {u1, . . . , ur} be a basis for S and let {v1, . . . , vk} be a basis for T . Thus by the
hypothesis, we know that dim(V ) = r+k. Consider x ∈ V . Thus we know that x = u+v, where
u ∈ span(u1, . . . , ur) and v ∈ span({v1, . . . , vk}). Thus we know that {u1, . . . , ur, v1, . . . , vk}
spans V . Since dim(V ) = k + r, we know that {u1, . . . , ur, v1, . . . , vk} is linearly independent
(if not we could find a smaller spanning set), and therefore is a basis.
Now suppose 0 = u+ v = a1u1 + · · ·+ arur + b1v1 + · · ·+ bkvk. Since {u1, . . . , ur, v1, . . . , vk} is
a linearly independent set, we know that

0 = a1u1 + · · ·+ arur + b1v1 + · · ·+ bkvk =⇒ a1 = · · · = ar = b1 = · · · = bk = 0

Therefore, 0 = u+v =⇒ u = 0 and v = 0. Therefore, by theorem, we know that V = S
⊕
T . �

Therefore, from the lemma above, we know that if V = S + S⊥, then V = S
⊕
S⊥.

If V = S
⊕
S⊥, then for any x ∈ V , we know that x = u + v for a unique u ∈ S and v ∈ S⊥.

If {u1, . . . , um} is an orthonormal basis for S (with respect to an inner product) then we know
how to construct u. Namely,

u = 〈x, u1〉u1 + 〈x, u2〉u2 + · · ·+ 〈x, um〉um

Note this is called the projection of x onto S. We can also see that v = x− u.

Definition 11 Let x ∈ V and U be a subspace of V . Thus we can see that V = U
⊕
U⊥. Thus

we can see that for any x ∈ V , x = u + v for a unique u ∈ U and v ∈ U⊥. We can define the
unique mapping P : x ∈ V → u ∈ U as an orthogonal projector. u = P (x) is known as the
orthogonal projection.

What does P look like? Suppose x ∈ U ⊆ V . Then we have that P (x) = x since x = x + 0
and 0 ⊥ x. Suppose that x ∈ V . By definition, we know P (x) ∈ U , so P (P (x)) = P (x).
Therefore, we have that P ◦ P = P 2 = P (idempotent). Let x, y ∈ V , what does P (x+ y) look
like? We can decompose x and y such that x = u1 + v1 and y = u2 + v2 where u1, u2 ∈ U and
v1, v2 ∈ U⊥. Therefore, we can see that P (x + y) = u1 + u2 = P (x) + P (y). We can also see
that αx = αu1 + αv1. Therefore, we can see that P (αx) = αu1 = αP (x). Therefore we can see
that P is a linear map or linear transformation.
For any x ∈ V , we can see that x = P (x) + v = P (x) + (I − P )(x). Thus we can see that
I − P : x ∈ V → v ∈ U⊥.

Definition 12 If V = S
⊕
T , then x = Ps(x) + (I − Ps)(x) is called an oblique projection.

If T = S⊥, then it is considered an orthogonal projection.

12



1.2 Inner Product Spaces

Theorem 5 (Pythagoras) Let x ∈ V and let U be a subspace of V . Then x = u + v where
u ∈ U and v ∈ U⊥.

||x||2 = ||u||2 + ||v||2

Proof: Let x ∈ V and let U be a subspace of V . Then x = u + v where u ∈ U and v ∈ U⊥.
Then

|x||2 = ||u+ v||2 = 〈u+ v, u+ v〉 = 〈u, u〉+ 2〈u, v〉+ 〈v, v〉 = ||u||2 + 2〈u, v〉+ ||v||2

since u ⊥ v, we have
||x||2 = ||u||2 + ||v||2

�

Theorem 6 (Approximation Theorem) Let V be a vector space. Let U be a subspace of V .
Let x ∈ V . Then

||x− PU (x)|| ≤ ||x− u|| ∀u ∈ U
where PU (x) is the orthogonal projection of x onto U .

Proof:

||x−u||2 = ||x−PU (x)+PU (x)−u||2 = ||x−PU (x)||2 +2〈x−PU (x), PU (x)−u〉+ ||PU (x)−u||2

Notice that x − PU (x) ∈ U⊥ and PU (x) − u ∈ U . Therefore by the Pythagoras theorem, we
know that

||x− u||2 = ||x− PU (x)||2 + ||PU (x)− u||2 =⇒ ||x− PU (x)||2 = ||x− u||2 − ||PU (x)− u||2

Therefore, by the positivity of norms, we know that ||x − PU (x)|| ≤ ||x − u|| ∀u ∈ U with
equality when PU (x) = u. �

Using the approximation theorem, we can construct the projection matrix used in linear regres-
sion.
Let V = Rn and {u1, . . . , up} be an orthonormal basis for U .

PU (x) = 〈x, u1〉u1 + 〈x, u2〉u2 + · · ·+ 〈x, up〉up

= u′1xu1 + u′2xu2 + · · ·+ u′pxup = u1u
′
1x+ u2u

′
2x+ · · ·+ upu

′
px

= (u1u
′
1 + u2u

′
2 + · · ·+ upu

′
p)x = QQ′x

where Q = [u1, . . . , up]. Suppose you are given a matrix of predictors X ∈ Rn×p, where the
columns of X are linearly independent and span(U) = colspace(X).
We can start with a QR decomposition of X = QR, where Q is orthogonal and R is upper
triangular.

X = QR =⇒ Q′X = Q′QR = R

Since the columns of X are linearly dependent, we know that the diagonal elements of R are
non-zero. This means that Rx = 0 =⇒ x = 0 =⇒ ∃R−1 Since we know the projection matrix
is QQ′, we have

QQ′ = X(R−1R−T )X ′ = X(R′R)−1X ′ = X(X ′QQ′X)−1X ′

Notice that QQ′X is the projection of X onto itself, so QQ′X = X. Therefore, we have

QQ′ = X(X ′X)−1X ′

which is the projection matrix found in classical linear algebra books.

13
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1.3 Linear Transformations and Matrices

Definition 13 Let V and W be vector spaces. Let dim(V ) = n and dim(W ) = m. T : V →W
is defined as a linear transformation and has the following properties

1. T (x+ y) = T (x) + T (y) ∀x, y ∈ V

2. T (αx) = αT (x) ∀x ∈ V, α ∈ F

From this definition, the we can see that T (0) = 0 (T (x) = T (x+0) = T (x)+T (0) =⇒ T (0) =
0).
Suppose T : V → W ( T ∈ L(V,W )). Let {v1, . . . vn} be a basis for V . and {w1, . . . , wm} be a
basis for W .
Thus consider x ∈ V . Thus we have x1v1 + · · ·+ xnvn. Therefore we have

T (x) = x1T (v1) + · · ·+ xnT (vn)

Since T (vj) ∈W , we can say that T (vj) = t1jw1 + . . . tmjwm. Thus we can see that

T (x) = x1(t11w1 + . . . tm1wm) + · · ·+ xn(t1nw1 + . . . tmnwm)

Thus we can see that tij is the coordinates of T (x) with respect to the basis vector vi and basis
vector wj . We can use this idea to formulate a matrix.

Definition 14 A matrix, A = M(T (x), {v1, . . . , vn}, {w1, . . . , wm}), are the coordinates of
T (X) ∈ L(V,W ) with respect to the bases {v1, . . . , vn} ∈ V and {w1, . . . , wm} ∈W .

A =


t11 t21 . . . t1n
t21 t22 . . . t2n
...

...
. . .

...
tm1 tm2 . . . tmn


Thus form this definition, we can see that T (x) = Ax = x1(t11w1 + . . . tm1wm)+ · · ·+xn(t1nw1 +
. . . tmnwm) or

Ax =


t11 t21 . . . t1n
t21 t22 . . . t2n
...

...
. . .

...
tm1 tm2 . . . tmn



x1

x2
...
xn


Lemma 10 M(S ◦ T ) = M(S)M(T )

Proof: Let T : V → W and S : W → U . Let {v1, . . . vn} be a basis for V , {w1, . . . , wm} be a
basis for W , and {u1, . . . , up} be a basis for U .

S ◦ T (vj) = S(T (vj)) = S(t1jw1 + · · ·+ tmjwm) = t1jS(w1) + · · ·+ tmjS(wm)

We can see that S(wk) = s1ku1 + · · ·+ spkup. Therefore, we have

S(T (vj)) = t1j(s11u1 + . . . sp1up) + · · ·+ tmj(s1mu1 + . . . spmup)

= (t1js11 + t2js12 + · · ·+ tmjs1m)u1 + · · ·+ (t1jsp1 + t2jsp2 + · · ·+ tmjspm)up

thus we can see that the (k, j)th is
∑

i tijski for 1 ≤ k ≤ p and 1 ≤ j ≤ n. Thus we can see that∑
i tijski is the (k, j)th element of M(S)M(T ). Thus we have M(S ◦ T ) = M(S)M(T ). �

Lemma 11 M(S + T ) = M(S) +M(T )

14



1.4 Adjoint (Transposes) on an Inner Product Space

Proof: Let {v1 . . . vm} be a basis for V . Let {w1, . . . , wn} be a basis for W . Thus, we can
express S(vj) and T (vj) as:

S(vj) = s1jw1 + · · ·+ snjwn

T (vj) = t1jw1 + · · ·+ tnjwn

(S + T )(vj) = S(vj) + T (vj) = (s1j + t1j)w1 + . . . (snj + tnj)wn

Thus the (i, j)th element of M(S+T ) is (sij+tij) for 1 ≤ i ≤ n and 1 ≤ j ≤ m. We can see that
this is equal to the (i, j)th element of M(S+T ). Therefore, we have M(S+T ) = M(S)+M(T ).
�

Note that for any A ∈ Rm×n and B ∈ Rn×p, we have that

AB = [Ab1 : Ab2 : · · · : Abp]

Thus we can see that

[Ax]T = [x1a∗1 + · · ·+ xna∗n]T

= x1a
T
∗1 + · · ·+ xna

T
∗n

= [x1, . . . , xn]

a
T
∗1
...
aT∗n

 = xTAT

Similarly we have

[AB]T = [Ab1 : Ab2 : · · · : Abp]T

=

(Ab1)T

...
(Abp)

T

 =

b
T
1 A

T

...
bTpA

T

 =

b
T
1
...
bTp

AT = BTAT

Lemma 12 Let C : V → W , B : W → U , and A : U → T . Then we have A ◦ (B ◦ C) =
(A ◦B) ◦ C (Association of linear transformations).

Proof: Let x ∈ V . Thus C(x) = y for a unique y ∈ W . Similarly, we have B(y) = z for a
unique z ∈ U and A(z) = m for a unique m ∈ T .

Let D = A ◦B. Thus, by construction, D(y) = m.

(A ◦ (B ◦ C))(x) = A ◦B(C(x)) = A ◦B(y) = A(B(y)) = A(z) = m

((A ◦B) ◦ C)(x) = (D ◦ C)(x) = D(C(x)) = D(y) = m

Therefore we can see that A ◦ (B ◦ C) = (A ◦B) ◦ C. �

1.4 Adjoint (Transposes) on an Inner Product Space

Theorem 7 (Riesz Representation Theorem) Let φ : V → F (F is the field). Then there
exists a unique v ∈ V such that φ(u) = 〈u, v〉.

15
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Proof: Let {u1, . . . un} be an orthonormal basis for V . Consider u ∈ V . Therefore, we have
u = 〈u, u1〉u1 + · · ·+ 〈u, um〉um

φ(u) = φ(〈u, u1〉u1 + · · ·+ 〈u, um〉um) = 〈u, u1〉φ(u1) + · · ·+ 〈u, um〉φ(um)

= 〈u, φ(u1)u1 + · · ·+ φ(um)um〉

Therefore if we let v = φ(u1)u1 + · · ·+ φ(um)um, we have φ(u) = 〈u, v〉.
Thus all we have to prove is the uniqueness of v. Suppose v1, v2 ∈ V such that φ(u) = 〈u, v1〉 =
〈u, v2〉 ∀u ∈ V . Thus we have

〈u, v1 − v2〉 = 0 ∀u ∈ V

Letting u = v1 − v2 ∈ V , we have that

〈v1 − v2, v1 − v2〉 = 0 =⇒ v1 = v2

Therefore, we proved that it is unique. �

Definition 15 Let T ∈ L(V,W ). Choose any w ∈W . Let φ : V → F such that φ(v) = 〈Tv,w〉.
Let w∗ we the unique vector such that φ(v) = 〈v, w∗〉 ∀v ∈ V (Riesz-Representation Theorem).
Let T ∗ be the map such that T ∗(w) = w∗ ∀w ∈W . Therefore, we have

〈Tv,w〉 = 〈v, w∗〉 = 〈v, T ∗w〉 ∀v ∈ V,w ∈W

The mapping T ∗ is called the adjoint.

Lets explore the properties of the adjoint. Is T∗ linear?
Let T ∗ ∈ L(W,V ) thus we have

〈v, T ∗(w1 + w2)〉 = 〈Tv,w1 + w2〉 = 〈Tv,w1〉+ 〈Tv,w2〉

= 〈v, T ∗w1〉+ 〈v, T ∗w2〉 = 〈v, T ∗w1 + T ∗w2〉

Now consider 〈v, T ∗(αw)〉.

〈v, T ∗(αw)〉 = 〈Tv, αw〉 = α〈Tv,w〉 = α〈v, T ∗w〉 = 〈v, αT ∗w〉

Therefore we can see that T∗ is linear.

Definition 16 We call A self-adjoint (or symmetric in real vector spaces) if A∗ = A.

1.5 The Four Fundamental Subspaces

Definition 17 Let A ∈ L(V,W ). The range (or column space) of A is range(A) = C(A) =
{Ax|x ∈ V } ⊆W

Definition 18 Let A ∈ L(V,W ). The null space of A is N (A) = {x ∈ V |Ax = 0} ⊆ V

The four fundamental subspaces are:

1. C(A)

2. C(A)⊥

3. N (A)

4. N (A)⊥

Lemma 13 The range(A) is a subspace of W and nullspace(A) is a subspace of V .
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1.5 The Four Fundamental Subspaces

Proof: Let A ∈ L(V,W ). By definition, range(A) = {Ax|x ∈ V }. Therefore, Ax = A(x) ∈W
by the construction of A. Therefore, range(A) ⊆W .
Notice that 0 ∈ V and that A(0) = 0 (If Ax = y, then Ax = A(x+ 0) = A(x) + A(0) = y =⇒
A(0) = 0). Therefore, we have that 0 ∈ range(A).
Let y ∈ range(A). Thus for A(x) = y for some x ∈ V . Let α ∈ R. Since V is a subspace,
αx ∈ V . Thus by the properties of linear transformations, A(αx) = αA(x) = αy. Therefore,
we have that y ∈ range(A) =⇒ αy ∈ range(A).
Let y ∈ range(A) and z ∈ range(A). Therefore we have Ax1 = y and Ax2 = z for some
x1, x2 ∈ V . Since V is a subspace, we know that (x1 + x2) ∈ V . From the properties of linear
transformations A(x1 +x2) = Ax1 +Ax2 = y+ z. Therefore, if y ∈ range(A) and z ∈ range(A),
then (y + z) ∈ range(A).
Thus from the properties above, we know that range(A) is a subspace of W .
By definition, nullspace(A) = {x ∈ V |Ax = 0}. Therefore, by construction of the nullspace,
nullspace(A) ⊆ V .
Since A0 = A(0) = 0, we have that 0 ∈ nullspace(A).
Suppose that y ∈ nullspace(A). Let α ∈ R. Thus by the properties of linear transformations,
Aαy = A(αy) = αA(y) = α(0) = 0. Therefore, we can see that if y ∈ nullspace(A), then αy ∈
nullspace(A).
Let y ∈ nullspace(A) and z ∈ nullspace(A). By the properties of linear transformations, we
have A(y+ z) = A(y) +A(z) = 0 + 0 = 0. Therefore, if y ∈ nullspace(A) and z ∈ nullspace(A),
then (y + z) ∈ nullspace(A).
Therefore, from the properties above, we know that nullspace(A) is a subspace of V . �

Theorem 8 (Rank-Nullity Theorem) Let A ∈ L(V,W ). Thus we have dim(C(A))+dim(N (A)) =
dim(V ).

Proof: Let {x1, . . . , xk} be a basis for the null space of A. Therefore, k = dim(N (A)) Since
N (A) ⊆ V , we can extend this basis to a basis for V . Let {x1, . . . , xk, v1, . . . , vr} be a basis for
V .
Claim: {Av1, . . . , Avr} is a basis for the column space of A.
Let x ∈ C(A). Therefore, x = Ay for some y ∈ V . Thus we can write x as

x = A(y) = A(a1x1 + · · ·+ akxk + ak+1v1 + . . . ak+rvr)

= a1A(x1) + · · ·+ akA(xk) + ak+1A(v1) + . . . ak+rA(vr)

Notice that A(xi) = 0 since xi ∈ N (A) (1 ≤ i ≤ k) Therefore we can see that

x = ak+1A(v1) + . . . ak+rA(vr) = ak+1Av1 + · · ·+ ak+rAvr

Therefore, we can see that x ∈ span({Av1, . . . , Avr}). Therefore, C(A) = span{Av1, . . . , Avr}.
All that we have to do is prove that {Av1, . . . , Avr} is linearly independent.
Suppose that a1Av1 + · · ·+ arAvr = 0. Thus we have

A(a1v1 + · · ·+ arvr) = 0

Thus we can see that (a1v1 + · · ·+ arvr) ∈ N (A). Therefore we can say that

a1v1 + · · ·+ arvr = b1x1 + · · ·+ bkxk =⇒ a1v1 + · · ·+ arvr − b1x1 − · · · − bkxk = 0

Since {x1, . . . , xk, v1, . . . , vr} is linearly independent, we know that a1 = · · · = ar = b1 = · · · =
bk = 0. Therefore, a1Av1 + · · · + arAvr = 0 =⇒ a1 = · · · = ar = 0, so {Av1, . . . , Avr} is
linearly independent. Therefore, {Av1, . . . , Avr} is a basis for the column space of A.
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Thus we have dim(C(A)) + dim(N (A)) = dim(V ). �

Let A ∈ L(V,W ). Let dim(V ) = n. From this, we have that:

x ∈ N (A) ⇐⇒ Ax = 0 ⇐⇒ 〈y,Ax〉 = 0 ∀y ∈W ⇐⇒ 〈A∗y, x〉 = 0 ∀y ∈W

〈A∗y, x〉 = 0 ∀y ∈W ⇐⇒ 〈A′y, x〉 = 0 ∀y ∈W ⇐⇒ x ⊥ C(A) ⇐⇒ x ∈ C(A)⊥

Therefore, we can see that N (A) = C(A)⊥. Thus, we have

dim(C(A′)⊥) + dim(C(A′)) = dim(N (A)) + dim(C(A′)) = n

We also have from the rank nullity theorem that

dim(N (A)) + dim(C(A)) = n

Therefore we can see that
dim(C(A′)) = dim(C(A))

Definition 19 The rank of A is defined as rank(A) = dim(C(A′)) = dim(C(A))

Definition 20 The nullity of A is defined as nullity(A) = dim(N (A))

Lemma 14 For any two matrices A and B, we have that rank(AB) ≤ min{rank(A), rank(B)}.

Proof: Let A ∈ Rm×n and B ∈ Rn×p. Let x ∈ C(AB). Thus x = ABy for some y ∈ Rn. Thus
we can see that x = A(By), so x ∈ C(A). Therefore, we can say that C(AB) ⊆ C(A). Therefore,
we can see that rank(AB) ≤ rank(A).
Since rank(A) = rank(A′), we know that

rank(AB) = rank((AB)′) = rank(B′A′) ≤ rank(B′) = rank(B)

Therefore, we know that rank(AB) ≤ min{rank(A), rank(B)}.

Theorem 9 (Rank Factorization)Suppose that A ∈ Rm×n. Let rank(A) = r. Let C ∈ Rm×r
be a matrix such that the columns of C form a basis for C(A). Then there exists a matrix
R ∈ Rr×n such that A = CR

Using this theorem, we can prove (again) that rank(A) = rank(A′). From the rank factorization
theorem, we have that A′ = R′C ′ we know that

rank(A′) = rank(R′C ′) ≤ rank(R′) ≤ # of columns of R = r = rank(A)

=⇒ rank(A′) ≤ rank(A)

Similarly, using A = (A′)′, we have

rank((A′)′) ≤ rank(A′)

Therefore, we have that rank(A) = rank(A′).
�

Definition 21 Let A be a square matrix. Let N (A) = {0} (A is full rank). Then there exists
a matrix X, called the inverse such that AX = In.

Lemma 15 Let A be a square, full rank matrix. Thus there exists an inverse matrix X such
that AX = In. X is also a matrix such that XA = In.
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Proof: Let A ∈ Rn×n such that N(A) = {0}. Thus there exists a unique X ∈ Rn×n such that
AX = In.

AX = In =⇒ (AX)A = (In)A

AXA = A =⇒ A(XA− In) = 0

Therefore, we can see that (XA − In) ∈ N(A). By the construction of A, (XA − In) = 0.
Therefore, we have that XA = In. �

1.6 Eigenvectors and Eigenvalues

Let A ∈ Rn×n.Note that powers of a matrix exist (A,A2, A3, . . . , An). Consider the following
polynomial of matrices:

P (A) = c0I + c1A+ c2A
2 + . . . cnA

n

Similar to how we can decompose an ordinary polynomial, we have

P (A) = cn(A− λ1I)(A− λ2I) . . . (A− λnI)

Let x 6= 0. Thus we know that {x,Ax,A2x, . . . , Anx} ⊆ Rn is a linearly dependent set (n + 1
vectors).

By the linear dependence lemma, we know that there exists a j (2 ≤ j ≤ n) such that Ajx ∈
span({x,Ax, . . . , Aj−1x}) Let k be the largest such integer.

Thus there exists c0, . . . , ck such that c0x+ c1Ax+ · · ·+ ckA
kx = 0 where ck 6= 0. Therefore we

can rewrite this polynomial as

ck(A− λ1I) . . . (A− λkI)x = 0

Let u = (A − λkI)x. If u = 0, then x ∈ N (A − λkI). If u 6= 0, then let w = (A − λk−1I)u. If
w = 0, then we can see that u ∈ N (A− λk−1I).

If w 6= 0, we can continue in this fashion until we find a vector in the null space of (A − λjI).
If after k steps, the algorithm does not terminate, then we have

ck(A− λ1I)y = 0

Since ck 6= 0 and y 6= 0, we have y ∈ N (A− λ1I). Therefore any square matrix, there exists a
scalar λ and a non-zero vector x such that x(A− λI) = 0.

Definition 22 Let x(A − λI) = 0. We call the vector x an eigenvector corresponding to λ
and the scalar λ an eigenvalue . Together we call E(A) = {(λ, x)|x ∈ N (A − λI), x 6= 0} the
set of eigenpairs.

Suppose that {λ1, . . . , λk} are distinct eigenvalues of A (λi 6= λj , i 6= j). Let (λ1, x1), (λ2, x2),
. . . , (λk, xk) be the eigenpairs of A. Then {x1, . . . , xk} is linearly independent.

Proof: Suppose that {x1, . . . , xk} is linearly dependent. Thus, ∃j, 2 ≤ j ≤ k such that xj ∈
span({x1, . . . , xj−1}).
Chose the smallest such j. Thus we have that

(1) xj = c1x1 + · · ·+ cj−1xj−1

Multiplying (1) by λj
λjxj = c1λjx1 + · · ·+ cj−1λjxj−1
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Multiplying (1) by A, we get

Axj = λjxj = c1Ax1 + · · ·+ cj−1Axj−1

λjxj = c1λ1x1 + · · ·+ cj−1λj−1xj−1

Thus we have
0 = c1(λj − λ1)x1 + · · ·+ cj−1(λj − λj−1)xj−1

Since {x1, . . . , xj−1} are linearly independent, we know that ci(λj−λi) must be zero. But since
the λ′s are distinct, we know that c1 = · · · = cj−1 must be zero. However, by (1), we know that
xj = 0. Since xj is an eigenvector, we know that it cannot be zero (→←).

�

Definition 23 We say that A is similar to B if there exists a non-singular matrix P such
that A = PBP−1 or B = P−1AP .

Definition 24 We say that P is an orthogonal matrix if it is square and the columns of P
are orthonormal. Thus P ′P = In =⇒ P ′ = P−1. Thus we have PP ′ = In as well.

Theorem 10 (Schur’s Theorem) Let A ∈ Rn×n Then ∃ an orthogonal matrix P such that
P ′AP = T , where T is upper triangular. The diagonals of T are precisely the eigenvalues of A.

Proof: We will start by proving that there exists an orthogonal matrix P such that P ′AP = T
where T is a upper triangular matrix.
It is clear that the result holds for n = 1. Thus assume the result holds for (n − 1) × (n − 1)
matrices. Thus we have that

Av1 = λ1v1 v1 6= 0

We can extend v1 to an orthonormal basis for Rn ({v1, v2, . . . , vn} = V = [v1 : Γ]). Thus we
have

AV = A[v1 : Γ] = [Av1 : AΓ]

V ′AV =

[
v′1
Γ′

]
A
[
v1 Γ

]
=

[
v′1Av1 v′1AΓ
Γ′Av1 Γ′AΓ

]
=

[
λ1 ∗
0 B

]
Since B is a (n − 1) × (n − 1) matrix, by the induction hypothesis, we know that B = UT̃U ′,
where U is an orthogonal matrix. Therefore, we have

V ′AV =

[
λ1 v′1AΓ

0 UT̃U ′

]
=

[
1 0
0 U

] [
λ1 ∗
0 T̃

] [
1 0
0 U ′

]

=

[
λ1 ∗
0 UT̃

] [
1 0
0 U ′

]
=

[
λ1 ∗U ′
0 UT̃U ′

]
Therefore, we know that ∗ = v′1AΓU . Thus we have that

V ′AV =

[
1 0
0 U

] [
λ1 v′1AΓU

0 T̃

] [
1 0
0 U ′

]
= ŨT Ũ ′

Thus we can see that Ũ is orthogonal and T is upper triangular.
Now we will prove that the diagonal elements of T are eigenvalues of T . Suppose that λ /∈
diag(T ) = {t11, . . . , tnn}. Since λ is not on the diagonal of T , we know that (T −λI)x = 0 =⇒
x = 0 since all diagonal elements are non-zero. Thus N (T −λI) = {0}, which would imply that
the eigenvector would be 0, which is a contradiction (→←).
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Now suppose that λ = tjj =⇒ T − λI has at least one diagonal element equal to zero. Thus,
there is a free variable, which implies that there exist x 6= 0 such that (T −λI)x = 0. Therefore
we know that (λ, x) is an eigenpair of T . Using lemma 16, since T and A are similar matrices,
we know that they have the same eigenvalues.

�

Lemma 16 Let A and B be n × n matrices such that P−1AP = B (A similar to B). Prove
that dim(N (A− λI)) > 0 ⇐⇒ dim(N (B − λI)) > 0.

Proof: ( =⇒ ) Let P−1AP = B. Suppose dim(N (A− λI)) > 0. Let x ∈ N (A− λI) (x 6= 0).
Thus (A− λI)x = 0. Thus we have

P−1(A− λI)x = (P−1A− λP−1)x = 0

Since x = PP−1x, we have

(P−1A− λP−1)x = (P−1A− λP−1)PP−1x = (P−1AP − λP−1P )P−1x = (B − λI)P−1x = 0

Therefore P−1x ∈ N (B − λI). Note that P−1x 6= 0 (If it was, then PP−1x = x = 0, which by
construction is not possible). Therefore, we know that dim(N (B − λI)) > 0.
( ⇐= ) Now suppose dim(N (B − λI)) > 0. Let x ∈ N (B − λI) (x 6= 0). Thus we have
(B − λI)x = (P−1AP − λI)x = 0.

(P−1AP − λI)x = 0 =⇒ P (P−1AP − λI)x = (AP − λP )x = 0

We can see that x = P−1Px. Thus we have

(AP − λP )x = (AP − λP )P−1Px = (A− λI)Px = 0

Therefore, we can see that Px ∈ N (A−λI), where Px 6= 0. Therefore we see that dim(N (B−
λI)) > 0.
Therefore dim(N (A− λI)) > 0 ⇐⇒ dim(N (B − λI)) > 0. �

Theorem 11 (Spectral Theorem) Let A be a square and symmetric matrix. There exists
an orthogonal P such that P ′AP = Λ, where Λ is diagonal.

Proof: From Schur’s Theorem, we have that

P ′AP = T

where T is an upper triangular matrix. However, notice that

(P ′AP )′ = P ′A′P = P ′AP = T ′

since A is symmetric. Thus we have that

P ′AP = T ′ = T = Λ

Since T is upper triangular and T ′ is lower triangular, we know that Λ must be diagonal. �

Definition 25 We call a matrix positive definite if A is real, symmetric, and all its eigen-
values are positive.
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Note an alternate definition may be that a positive definite matrix is defined as any matrix A
such that x′Ax > 0 ∀x ∈ Rn \ {0}. We can see that this is an equivalent definition since we
have

x′Ax = x′P ′ΛPx = y′Λy =

n∑
i=1

λiy
2
i

where y = Px. Thus we can see that this will be greater than zero for all x 6= 0.

Why must covariance matrices be positive definite (positive semi-definite)?

Let z be a random vector in Rn. We know that cov(α′z) = α′Σzα. Since cov(α′z) > 0, we have
that α′Σzα > 0. Therefore, we can see that Σz must be positive definite.

Theorem 12 (Cholesky Decomposition) Let A be a positive semi-definite matrix. Then
there exists a decomposition of A such that A = LL′ where L is a lower triangular matrix.

Proof: We will first start with a matrix A that is positive semi-definite. Consider the Spectral
Decomposition of A

A = P ′ΛP = P ′Λ1/2Λ1/2P = BB′

where B = P ′Λ1/2. Note that we can take the square root of Λ since it is a diagonal matrix
with positive elements. We can then use a QR-Decomposition on B′

B′ = QR =⇒ BB′ = R′Q′QR = R′R = LL′

Since R is upper triangular, we know that L is lower triangular. �

1.7 Singular Value Decomposition, Generalized Inverses, and PCA

Consider the structure of A ∈ Rm×n. Let {v1, . . . , vn} be an orthonormal basis for Rn. Suppose
we wish to form vectors in the column space of A, where A acts on the Vj ’s. We wish to define

Avi = σiui where σi = ||Avi||

Thus we can see that ui = Avi
σi

(if well defined). When is ui not well defined? We can see that
it is not well defined when σi = 0 or Avi = 0.

Suppose that we are able to find Avi = σiui for i = 1, . . . , r (r ≤ n) such that σi 6= 0 i = 1, . . . , r.
Can we choose orthonormal vi’s such that {u1, . . . , ur} is also an orthonormal set? Thus we
have that

〈ui, uj〉 = 〈 1

σi
Avi,

1

σj
Avj〉 =

1

σiσj
〈Avi, Avj〉 =

1

σiσj
v′jA

′Avi = 0

Note that A′A is real and symmetric, thus by the Spectral Theorem we have

A′AP = PΛ

Let vj be the jth column of P . Thus we have

A′Avj = λjvj j = 1, . . . , n

Thus we have

v′iA
′Avj = v′iλjvj = λj〈vi, vj〉 = 0

22
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Therefore, by letting vj be the jth column of P , we have that {u1, . . . , ur} is also an orthonormal
set. Thus putting it all together, we have

A
[
v1 . . . vm

]
=
[
u1 . . . ur

]

σ1 0 . . . 0
0 σ2 . . . 0
...

...
. . .

...
0 0 . . . σr


Theorem 13 (Singular Value Decomposition) Let A ∈ Rm×n that has rank r. Thus we
can decompose A as A = UDV ′ Where U and V are orthogonal matrices and D is a diagonal
matrix. We can write it as

A =
[
U1 U2

] [Σ 0
0 0

] [
V ′1
V ′2

]
Where U1 ∈ Rm×r are the eigen vectors of AA′ corresponding to the non-zero eigenvalues.
U2 ∈ Rm×m−r are the eigen vectors of AA′ corresponding to the zero eigenvalues (also can be
thought of as a basis extension). Σ ∈ Rr×r is a diagonal matrix containing the square root of
the non-zero eigenvalues of A′A or AA′. V1 ∈ Rn×r are the eigen vectors of A′A corresponding
to the non-zero eigenvalues. V1 ∈ Rn×n−r are the eigen vectors of A′A corresponding to the zero
eigenvalues.

Proposition: C(U1) = C(A) and C(V2) = N (A)

Proof: We can start with the fact that

A = U1ΣV ′1 =⇒ U1 = AV1Σ−1

Let w ∈ C(A). Thus w = Av for some v ∈ Rn. Since V = [V1 : V2] is a basis for Rn, we have
that v =

∑n
i=1 αivi thus we have

Av =
n∑
i=1

αiAvi =
r∑
i=1

αiAvi

since Avj = 0 for j > r. Thus we have that

AV1α = U1Σα ∈ C(U1)

Therefore we have that C(A) ⊆ C(U1). It is apparent that C(U1) ⊆ C(A) since A = U1ΣV ′1 =⇒
U1 = AV1Σ−1. Thus we have that C(U1) = C(A).

Now suppose that w ∈ N (A). Therefore, we know that Aw = 0 (w ∈ Rn). Thus we have that
w =

∑n
i=1 αivi. Thus,

Aw = 0 =⇒
n∑
i=1

αiAvi =

r∑
i=1

αiAvi = 0

Thus we have that
r∑
i=1

αiσiui = 0 =⇒ α1 = α2 = · · · = αr = 0

Therefore,

w =

n∑
i=1

αivi =

n∑
i=r+1

αivi ∈ C(V2)
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Therefore, we have that N (A) ⊆ C(V2). From the original SVD, we have that [AV1 : AV2] =
[U1Σ : 0]. Thus we can see that C(V2) ⊆ N (A). Therefore, C(V2) = N (A). �

From SVD, we have that A = UDV ′ which means that A′ = V D′U ′. Thus by analogy, we have
that C(A′) = C(V1) and N (A′) = C(U2).

Thus we have the following:

1. Columns of U1 create an orthonormal basis for C(A)

2. Columns of U2 create an orthonormal basis for C(A)⊥ = N (A′)

3. Columns of V1 create an orthonormal basis for C(A′)

4. Columns of V2 create an orthonormal basis for C(A′)⊥ = N (A)

Using these properties, we can easily find the following orthogonal projectors:

1. PA = U1U
′
1

2. PA′ = V1V
′

1

3. PN (A) = V2V
′

2

4. PN (A′) = U2U
′
2

Definition 26 Let A ∈ Rn×m. A− is the generalized inverse of A if AA−A = A.

There are an infinite number of generalized inverses in general, and many ways to construct
them. One way would be to consider the full-rank factorization of A. Thus we have

A = CR

Thus we can see that
CRR′(RR′)−1(C ′C)−1C ′CR = CR

Thus we can see that one possible generalized inverse is A− = R′(RR′)−1(C ′C)−1C ′.

Definition 27 Let A ∈ Rn×m. A+ is the Moore-Penrose inverse of A if the following
conditions hold:

1. AA+A = A

2. A+AA+ = A+

3. (AA+)∗ = (AA+)

4. (A+A)∗ = A+A

One property of the Moore-Penrose (MP) inverse is that it always exists and is unique. One
way to get the MP inverse is to use the SVD of a matrix. Consider a matrix A ∈ Rn×m. From
SVD, we have

A =
[
U1 U2

] [Σ 0
0 0

] [
V ′1
V ′2

]
= UDV ′

Consider setting A+ = V D+U ′, where D+ =

[
Σ−1 0
0 0

]
. Thus, we can see that

AA+A = UDV ′V D+U ′UDV ′ = UDD+DV
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Since

DD+D =

[
Σ 0
0 0

] [
Σ−1 0
0 0

] [
Σ 0
0 0

]
=

[
I 0
0 0

] [
Σ 0
0 0

]
=

[
Σ 0
0 0

]
= D,

we have that AA+A = UDV ′ = A. One can check that the other 3 properties hold as well.

Suppose we have a data matrix X ∈ Rn×p of rank r, where n is the number of samples and
p are the number of variables. Suppose that we wish to reduce the dimension of the problem
(to k < p). Suppose that X is mean-centered. Then we can see that the covariance matrix is
C = X′X/(n− 1). Consider the SVD of X. Thus we have

X = UDV ′ =
[
U1 U2

] [Σ 0
0 0

] [
V ′1
V ′2

]
where Σ = diag(σ1, . . . , σr), σ1 > · · · > σr

. Consider trying to find a linear combination of the columns of X such that the variance of that
variable is maximized. We can see that it is equivalent to the following maximization problem:

maxv||Xv|| s.t. ||v||2 = 1

Notice that V creates a basis for Rn. Thus we can see that v ∈ span(V ), and

v = c1v1 + c2v2 + · · ·+ cpvp

||v||2 = 1 =⇒ c2
1 + c2

2 + · · ·+ c2
p = 1

Thus we have

Av = c1Xv1 + c2Xv2 + · · ·+ cnXvn = c1σ1u1 + · · ·+ crσrur

||Xv||2 = c2
1σ

2
1 + c2

2σ
2
2 + · · ·+ c2

rσ
2
r ≤ (c2

1 + · · ·+ c2
r)σ

2
1 ≤ σ)2

1

We can see that we achieve this upper bound when c1 = 1 and c2 = . . . cr = 0. Thus we
have that v1 maximizes this problem. We call Xv1 the first principal component, and v1 the
loading vector. We can see that maximizing ||Xv||2 will maximize the sample covariance of
this principal component. We can see that this principal component will roughly account for
σ2

1/
∑n

i=1 σ
2
i proportion of the total variance. When talking about the total variation of the

data X, we will be referring to the trace(X) (the sum of the variances of each column). Since
we know that the trace is the sum of the diagonal elements, or the sum of the eigenvalues of
X ′X/(n− 1), we know that V ′XX ′V/(n− 1) will have the same eigenvalues.

V ′XX ′V = V ′UD′V ′V DU ′V = (V ′U)D′D(V ′U)′

Thus we can see that the corresponding variance explained by the jth PC is σ2
j /
∑r

i=1 σ
2
i .

We can find the second principle component by solving the following maximization problem:

maxv||Xv||2 s.t. v ⊥ v1, ||v||2 = 1

The details are worked out in problem 38.

In general, we can just use the SVD of X to calculate the principal components. The matrix V
are the loadings, and XV are the principal components. If we wish to approximate a matrix X
by a rank z matrix, then we can use the SVD decomposition. Notice that the SVD decomposition
can be broken down into a series of rank-one updates

X =

r∑
i=1

σiu
′
ivi

where u′i is the ith row of U and vi is the ith column of V . Thus we can use the first z sums to
have a rank z approximation of X. This method will preserve

∑z
i=1 σ

2
i /
∑r

i=1 σ
2
i proportion of

the variance.
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1.8 Determinants, Partition Matrices and Other Useful Lemmas

Definition 28 The Determinant of a matrix A ∈ Rp×p is the product of the eigenvalues.

The following are some basic properties of determinants

1. |AB| = |A||B| if and only if A and B are square

2. |A−1| = 1
|A|

Theorem 14 (Simultaneous Diagonalization Theorem) Let A be positive definite and B
be positive semi-definite. Then there exists a non-singular matrix U such that U′AU = I and
U′BU = D where D are the eigenvalues of BA−1.

Proof: Consider the Cholesky decomposition of A, A = LLT , where L is lower triangular and
is also positive definite (since A is positive definite).

Therefore, L−1 exists, and L−1A
(
L−1

)T
= I. Consider the spectral decomposition of L−1B

(
L−1

)T
.

Therefore, we have TDTT = L−1B
(
L−1

)T
, where TTT = I, and D is diagonal. Let U =(

L−1
)T

T. Therefore, we have:

UTBU = D

UTAU = TTL−1LLT
(
LT
)−1

T = TTT = I

Therefore, U =
(
L−1

)T
T.

Claim: The non-zero eigenvalues of BA are the same as the non-zero eigenvalues of AB.

|BA− Iλ| = (−λ)n
∣∣∣∣I− 1

λ
BA

∣∣∣∣ = (−λ)n
∣∣∣∣I− 1

λ
AB

∣∣∣∣ = |AB− Iλ|

Therefore, we can see that D are the eigenvalues of L−1B
(
L−1

)T
, which are the eigenvalues of

B
(
L−1

)T
L−1 = BA−1. Since L−1B

(
L−1

)T
and BA−1, are the same size, we know that D

are the eigenvalues of BA−1. �

Theorem 15 (Sherman–Morrison–Woodbury formula) For all conformable matrices A,U,C,V,
we have that

(A + UCV)−1 = A−1 −A−1U(C−1 + VA−1U)−1VA−1

Lemma 17 Consider the following block matrix:[
A B
C D

]
We can invert this matrix in one of the following ways

1. [
A B
C D

]−1

=

[
A−1 + A−1B(D−CA−1B)−1CA−1 −A−1B(D−CA−1B)−1

−(D−CA−1B)−1CA−1 (D−CA−1B)−1

]
2. [

A B
C D

]−1

=

[
(A−BD−1C)−1 −(A−BDT−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1 + D−1C(A−BD−1C)−1BD−1

]
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2 Multivariate, Quadratic Forms, and Other
Distributions

2.1 Multivariate Normal

Definition 29 We say that x has a multivariate normal distribution if it has the following pdf:

fx(x|µ,Σ) =
1

(2π)p/2|Σ|1/2
exp

{
−1

2
(x− µ)′Σ−1(x− µ)

}
What is the MGF of y ∼ N (0,Σ)?

Ψy(t) = E(et
′y)

=

∫
et
′y 1

(2π)p/2|Σ|1/2
exp

{
−1

2
y′Σ−1y

}
dy =

∫
1

(2π)p/2|Σ|1/2
exp

{
−1

2
(y′Σ−1y − 2t′y)

}
dy

= exp

{
1

2
t′Σt

}∫
1

(2π)p/2|Σ|1/2
exp

{
−1

2
(y − tΣ)′Σ−1(y − tΣ)

}
dy

Therefore, we have that

Ψy(t) = exp

{
1

2
t′Σt

}
If µ 6= 0, let x = y − µ. Then E(x) = 0 and x ∼ N (0,Σ).

Ψy(t) = E(et
′y) = E(et

′(x+µ)) = E(et
′x) + et

′µ

Thus we have

Ψx(t) = exp

{
1

2
t′Σt + t′µ

}
Suppose x ∼ N (µ,Σ). What is the distribution of y = Ax + b?

Ψy(t) = E(et
′y) = E(et

′(Ax+b)) = E(et
′Ax)et

′b = Ψy(A′t)et
′b

eµ
′A′t+ 1

2
t′AΣA′tet

′b = e(Aµ+b)′t+ 1
2
t′AΣA′t

Thus we can see that y ∼ N (Aµ+ b,AΣA′). How do we guarantee that AΣA > 0? We want
to show that x′AΣA′x > 0 ∀x 6= 0 =⇒ y′Σy > 0 ∀y s.t. x 6= 0. Thus we need to argue that
x 6= 0 ⇐⇒ y 6= 0. We can see that if x = 0, then y = 0. Suppose that x 6= 0 =⇒ y 6= 0.

Thus we have y = A′x = 0. How can we arrive at a contradiction? Consider (AA′)−1AA′x =
x = 0. Thus we arrive at a contradiction, and we know that A must be full row-rank. Therefore,
we have that y = Ax + b ∼ N (Aµ + b,AΣA′) if A is full row rank (If not, then we have a
rank deficient distribution, which means that the pdf does not exist, but the distribution is still
valid).

Theorem 16 (Cramer Wald’s device) x is multivariate normal iff a′x ∼ N (a′µ,a′Σa) for
all a 6= 0.
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2 Multivariate, Quadratic Forms, and Other Distributions

Normal distributions have the following properties:

1. If x ∼ N (µ,Σ), and T is an orthogonal matrix, then we have Tx ∼ N (Tµ,TIT′ = I)

2. Subsets of x are also multivariate normal

3. Uncorrelated =⇒ Independence

Note: The reverse of number 2 is not true. If all subsets of x are multivariate normal, that does
not imply that x is multivariate normal.

Now we will look at the conditional distribution of a multivariate random vector.

Lemma 18

[
y1

y2

]
∼ N

([
µ1

µ2

]
,

[
Σ11 Σ12

Σ21 Σ22

])
if and only if y1|y2 ∼ N(µ1−Σ12Σ−1

22 (µ2−y2),Σ11−

Σ12Σ−1
22 Σ21) and y2 ∼ N(µ2,Σ22)

Proof: ( =⇒ )

Suppose

[
y1

y2

]
∼ N

([
µ1

µ2

]
,

[
Σ11 Σ12

Σ21 Σ22

])
. Consider the following transformation

[
z1

z2

]
=

[
I −Σ12Σ−1

22

0 I

] [
y1

y2

]
Thus we have [

z1

z2

]
=

[
y1 − Σ12Σ−1

22 y2

y22

]
Using basic properties of the normal distribution, we know that[

z1

z2

]
∼ N

([
I −Σ12Σ−1

22

0 I

] [
µ1

µ2

]
,

[
I −Σ12Σ−1

22

0 I

] [
Σ11 Σ12

Σ21 Σ22

] [
I −Σ12Σ−1

22

0 I

]′)

Simplifying, we have that[
z1

z2

]
∼ N

([
µ1 − Σ12Σ−1

22 µ2

µ2

]
,

[
Σ11 − Σ12Σ−1

22 Σ21 0
0 Σ22

])
Since cov(z1, z2) = 0 we know that z1 ⊥⊥ z2 (property of Normal distribution). Consider

z1|z2 =
fz1,z2(z1, z2)

fz2(z2)
=
fz1(z1)fz2(z2)

fz2(z2)
= fz1(z1)

Thus

y1 − Σ12Σ−1
22 y2|y2 ∼ N(µ1 − Σ12Σ−1

22 µ2,Σ11 − Σ12Σ−1
22 Σ21)

Thus we can see that

y1|y2 ∼ N(µ1 − Σ12Σ−1
22 (µ2 − y2),Σ11 − Σ12Σ−1

22 Σ21)

Since

[
z1

z2

]
has a normal distribution, we know that z2 = y2 ∼ N(µ2,Σ22). Therefore, we have

if

[
y1

y2

]
∼ N

([
µ1

µ2

]
,

[
Σ11 Σ12

Σ21 Σ22

])
, then y1|y2 ∼ N(µ1−Σ12Σ−1

22 (µ2−y2),Σ11−Σ12Σ−1
22 Σ21) and

y2 ∼ N(µ2,Σ22).
(⇐= )
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2.1 Multivariate Normal

Suppose we have that y1|y2 ∼ N(µ1−Σ12Σ−1
22 (µ2−y2),Σ11−Σ12Σ−1

22 Σ21) and y2 ∼ N(µ2,Σ22).
We know that fy1,y2(y1, y2) = fy1|y2(y1|y2)fy2(y2). Thus we have that

(1)fy1,y2(y1, y2) ∝ exp{−1

2
(y1−µ1+Σ12Σ−1

22 (µ2−y2))′(Σ11−Σ12Σ−1
22 Σ21)−1(y1−µ1+Σ12Σ−1

22 (µ2−y2))−1

2
y′2Σ−1

22 y2}

Note that we can invert the

[
A B
C D

]
by using the fact that

A−1 =

[
(A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1 +D−1C(A−BD−1C)−1BD−1

]
Thus we have that

Σ−1 =

[
Σ11 Σ12

Σ21 Σ22

]−1

=

[
(Σ11 − Σ12Σ−1

22 Σ21)−1 −(Σ11 − Σ12Σ−1
22 Σ21)−1Σ12Σ−1

22

−Σ−1
22 Σ21(Σ11 − Σ12Σ−1

22 Σ21)−1 Σ−1
22 + Σ−1

22 Σ21(Σ11 − Σ12Σ−1
22 Σ21)−1Σ12Σ−1

22

]
Let ψ = (Σ11 − Σ12Σ−1

22 Σ21)−1 and γ = Σ12Σ−1
22 . Thus we have that

Σ−1 =

[
ψ −ψγ
γ′ψ Σ−1

22 + γ′ψγ

]

Consider Q =
[
(y1 − µ1)′ (y2 − µ2)′

]
Σ−1

[
(y1 − µ1)
(y2 − µ2)

]
= (y1−µ1)′ψ(y1−µ1)−2(y1−µ1)′ψγ(y2−µ2)+(y2−µ2)′Σ−1

22 (y2−µ2)+(y2−µ2)′γ′ψγ(y2−µ2)

((y1 − µ1)− γ(y2 − µ2))′ψ((y1 − µ1)− γ(y2 − µ2)) + (y2 − µ2)′Σ−1
22 (y2 − µ2)

Notice from (1), that we have

fy1,y2(y1, y2) ∝ exp{−1

2
Q}

Thus we have

fy1,y2(y1, y2) ∝ exp
{
−1

2

[
(y1 − µ1)′ (y2 − µ2)′

]
Σ−1

[
(y1 − µ1)
(y2 − µ2)

]}
We can see that this the kernel of a normal distribution, thus we know that[

y1

y2

]
∼ N

([
µ1

µ2

]
,

[
Σ11 Σ12

Σ21 Σ22

])

Therefore,

[
y1

y2

]
∼ N

([
µ1

µ2

]
,

[
Σ11 Σ12

Σ21 Σ22

])
if and only if y1|y2 ∼ N(µ1−Σ12Σ−1

22 (µ2−y2),Σ11−

Σ12Σ−1
22 Σ21) and y2 ∼ N(µ2,Σ22). �

Now we will explore the independence of normal random variables.

Lemma 19 Suppose that

[
y1

y2

]
∼ N

([
µ1

µ2

]
,

[
Σ11 Σ12

Σ21 Σ22

])
. Then we have that y1 ⊥⊥ y2 if and

only if Σ12 = 0.
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2 Multivariate, Quadratic Forms, and Other Distributions

Proof: We have that

Ψy(t) = exp

{
t′1µ1 + t′2µ2 +

1

2
t′1Σ11t1 +

1

2
t′2Σ22t2 + t′1Σ12t2

}
We can see that this factors into two normal mgfs if Σ12 = 0

Ψy1(t1)Ψy2(t2) = exp

{
t′1µ1 +

1

2
t′1Σ11t1

}
+ exp

{
t′2µ2 +

1

2
t′2Σ22t2

}
�

Lemma 20 Let y ∼ N (µ,Σ) and define U = AY, V = BY. Then U and V are independent
if and only if cov(U,V) = AΣB′ = 0.

Proof: Let W =

[
U
V

]
=

[
A
B

]
y. Thus we have that

cov(W) =

[
A
B

]
Σ
[
A′ B′

]
=

[
AΣA′ AΣB′

BΣA′ BΣB′

]
From lemma 19, we know that A and B are independent if and only if AΣB′ = 0. �

2.2 Quadratic Forms

Definition 30 Let x ∈ Rp and A ∈ Rp×p. We say that Q = x′Ax is a quadratic form in A.

Suppose x ∼ N (µ,Σ). Lets take a look at the expectation of Q.

E(Q) = E(x′Ax) = E((x−µ+µ)′A(x−µ+µ)) = E
{

(x− µ)′A(x− µ) + µ′Aµ + 2(x− µ)Aµ
}

= E
{

(x− µ)′A(x− µ)
}

+ µ′Aµ = E
{
tr((x− µ)′A(x− µ))

}
+ µ′Aµ

E
{
tr(A(x− µ)(x− µ)′)

}
+ µ′Aµ = tr(AΣ) + µ′Aµ

Therefore, we have if x ∼ N (µ,Σ), then E(x′Ax) = tr(AΣ) + µ′Aµ.

Lemma 21 If X ∼ N (µ,Σ), then we have that (x− µ)′Σ−1(x− µ) ∼ χ2
p.

Theorem 17 (Fundamental Theorem of Quadratic Forms) Let y ∼ N (0, I) and Q =
y′Ay. Then Q ∼ χ2

r ⇐⇒ A2 = A and rank(A) = r.

Proof: ( =⇒ ) Suppose that Q ∼ χ2
r . Then we have that

ΨQ(t) =
1

(1− 2t)r/2
= E(etQ)

=

∫
ety
′Ay e

− 1
2
y′y

(
√

2π)p
dy

=

∫
e−

1
2
y′(I−2tA)y

(
√

2π)p
dy

=

∫
e−

1
2
y′((I−2tA)−1)−1y

(
√

2π)p|I− 2tA|−1/2
dy|I− 2tA|−1/2
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2.2 Quadratic Forms

= |I− 2tA|−1/2

Thus we have that

(1− 2t)r = |I− 2tA| = |T′T− 2tTDT′| = |TT′|2|I− 2tD|

Thus we have

(1− 2t)r =

p∏
i=1

(1− 2tλi)

This equation holds for all t ∈ Nε(0) and by the fundamental theorem of algebra it has p roots.
We can see that the only way that can happen is if A has r eigenvalues equal to 1, and the rest
equal to zero. This means that A2 = A and rank(A) = r.

()⇐= ) Suppose that A2 = A and rank(A) = r. Then we have that

Q = y′Ay = y′TDT′y = zDz

Notice that z = T′y ∼ N (0, I). Thus we know that the zi’s are independent and have a
standard normal distribution. Therefore, we have

z′Dz =

p∑
i=1

z2
i λi =

r∑
i=1

z2
i λi =

r∑
i=1

z2
i

Therefore, we know that Q ∼ χ2
r . �

What if y ∼ N (0,Σ)? Let z = yΣ−1/2 ∼ N (0, I). Then we have

Q = y′Ay = z′Σ1/2AΣ1/2z

From the Fundamental theorem of Quadratic Forms, we know thatQ ∼ χ2
r ⇐⇒ Σ1/2AΣ1/2Σ1/2AΣ1/2 =

Σ1/2AΣ1/2 or in other words, AΣA = A.

Lemma 22 If U and V are two independent normal random variables, then U ⊥⊥ V′V and
U′U ⊥⊥ V′V.

Example: Lets prove that ȳ ⊥⊥ S2, where S2 = 1
n

∑n
i=1(yi − ȳ) and y ∼ N (0, I). Note that

ȳ = 1
n1′y and S2 = y′(I− 11′

n )y. Let U = 1
n1′y and V = (I− 11′

n )y. Thus we have

cov(U,V) = cov(
1

n
1′y, (I− 11′

n
)y)

=
1

n
1′cov(y)(I− 11′

n
) =

1

n
1′(I− 11′

n
)

=
1

n
1′ − 1′11′

n2
=

1

n
1′ − 1

n
1′ = 0

From lemma 22, we know that ȳ = U ⊥⊥ V′V = S2.

Theorem 18 Let Qi = y′Aiy where y ∼ N (0, I). If Qi ∼ χ2
ri, then Q1 ⊥⊥ Q2 ⇐⇒ A1A2 = 0.
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2 Multivariate, Quadratic Forms, and Other Distributions

Proof: ( =⇒ ) Suppose that Q1 ⊥⊥ Q2. Since Q1 ∼ χ2
r1 and Q2 ∼ χ2

r2 , we know that
Q1 +Q2 ∼ χ2

r1+r2 . We know that Q1 +Q2 = y′(A1 + A2)y. From the fundamental theorem of
quadratic forms, we know that (A1 + A2) = (A1 + A2)(A1 + A2). Thus we have

(A1 + A2)(A1 + A2) = A2
1 + A1A2 + A2A1 + A2

2 = A1 + A2

=⇒ (∗)A1A2 + A2A1 = 0

A1A1A2 + A1A2A1 = A1A2 + A1A2A1 = 0

A1A2A1 + A2A1A1 = A1A2A1 + A2A1 = 0

From this, we have

A1A2 = A2A1

From (∗), we have that

A1A2 = A2A1 = 0

(⇐= ) If A1A2 = 0, cov(A1y,A2y) = A1IA
′
2 = A1A2 = 0. Therefore, by lemma 22, we know

that since A1y ⊥⊥ A2y, we have Q1 = y′A1y ⊥⊥ y′A2y = Q2.

�

Lemma 23 Let y ∼ N (0, I) Suppose Qi = y′Aiy (Qi ∼ χ2
ri) for i = 1, 2 and Q1 − Q2 ≥ 0,

then Q1 −Q2 ∼ χ2
r1−r2 and Q1 −Q2 ⊥⊥ Q2,

Proof: Suppose that Q1 −Q2 ≥ 0, Thus we know that 0 ≤ y′(A1 −A2)y ∀y. In particular,
consider y ∈ N (A1). Thus we have

0 ≤ 0− y′A2y

Since y′A2y ≥ 0 we know that y′A2y. From the idempotency of A2, we have that

y′A2A2y = 0 =⇒ A2 ∈ N (A2)

Therefore, we have N (A1) ⊆ N (A2). For all y ∈ Rn, we have

(I−A1)y ∈ N (A1) ⊆ N (A2)

Since A2(I −A1)y = 0∀y, we have that A2(I −A1) = 0 or A2 = A1A2 (we also have that
A′2 = A2 = A′2A

′
1 = A2A1).

Thus we have

(A1 −A2)2 = A2
1 −A1A2 −A2A1 + A2

2 = A1 −A2 −A2 + A2 = A1 −A2

Therefore, by the fundamental theorem of quadratic forms, we know that Q1 − Q2 ∼ χ2
r1−r2 ,

where r1 = tr(A1) and r2 = tr(A2).

We can also see that (A1−A2)A2 = A2−A2 = 0, so by theorem 18, we have that Q1−Q2 ⊥⊥ Q2.
�
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2.3 Non-Central Distributions

2.3 Non-Central Distributions

We know from previous classes that if y ∼ Nn(0, I), that y′y ∼ χ2
n. What happens if yi ∼

N (θi, 1) where yi ⊥⊥ yj for i 6= j?

Definition 31 Let yi ∼ N (θi, 1) where yi ⊥⊥ yj for i 6= j. Then z = y′y =
∑n

i=1 y
2
i ∼ χ2

n(δ),
where δ =

∑n
i=1 θ

2
i . We call this distribution the Non-Central Chi-Squared Distribution,

and δ is known as the non-centrality parameter.

The Non-Central Chi-Squared distribution has the following properties:

1. E(z) =
∑n

i=1 Ey2
i =

∑n
i=1 E(yi − θi + θi)

2 =
∑n

i=1 E(yi − θi)
2 + θ2

i + θiE(yi − θi) =
n+

∑n
i=1 θ

2
i = n+ δ

2. var(z) =
∑n

i=1 E(yi)
4 − E(yi)

2 = 2n+ 4δ

3. If zi ∼ χ2(δi) and z1 ⊥⊥ z2, then we have z1 + z2 ∼ χ2(δ1 + δ2)

We know from previous classes that if we have y ∼ N (0, 1) and z ∼ χ2
n where y ⊥⊥ z, then

y√
z/n
∼ tn. We can extend this to a non-central distribution.

Definition 32 If y ∼ N (0, 1) and z ∼ χ2
n(δ) where y ⊥⊥ z, then y√

z/n
∼ tn(δ). We call this

distribution the Non-Central t Distribution.

We know that if x ∼ χ2
n and y ∼ χ2

r where x ⊥⊥ y, then x/n
y/r ∼ Fn,r. We can similarly extend

this to a non-central distribution.

Definition 33 If x ∼ χ2
n(δ) and y ∼ χ2

r where x ⊥⊥ y, then x/n
y/r ∼ Fn,r(δ). We call this

distribution the Non-Central F Distribution.

If y ∼ N (µ,Σ) then what is the distribution of Q = y′Ay? We can rewrite Q in the following
form:

Q = y′Σ−1/2TT′Σ1/2AΣ1/2TT′Σ−1/2y

Let T be the orthogonal matrix obtained by the spectral decomposition of Σ1/2AΣ1/2. Thus
we know that T′Σ1/2AΣ1/2T = D is diagonal. Let z = T′Σ−1/2y. Thus we know that
z ∼ N (T′Σ−1/2µ, I). Therefore, we have

Q = z′Dz =

n∑
i=1

λiz
2
i

where λi are the eigenvalues of Σ1/2AΣ1/2. Therefore, we can see that Q is a weighted linear
combination of independent χ2(µ′Σ−1/2tit

′
iΣ
−1/2µ) random variables, and the weights are the

eigenvalues of Σ1/2AΣ1/2.
Consider the following special cases:

1. Σ = I, A2 = A and has rank r.

Thus we have that D = diag(1, 1, . . . , 1, 0, . . . 0) with r 1’s (since idempotent matrices
have eigenvalues of either 1 or 0). Therefore, we have

Q = z′Dz =

r∑
i=1

z2
i

Since we know z ∼ N (T′Σ−1/2µ = T′µ, I), we have that

Q =

r∑
i=1

χ2
1(µ′tit

′
iµ)
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2 Multivariate, Quadratic Forms, and Other Distributions

= χ2
r

(
µ′

(
r∑
i=1

tit
′
i

)
µ

)

However, notice that (
∑r

i=1 tit
′
i) = T′DT = A. Thus we have that

Q ∼ χ2
r(µ
′Aµ)

2. A = Σ−1

Thus we have that D = T′Σ1/2AΣ1/2T = I. We also have that z ∼ N (T′Σ−1/2µ, I).
Thus we have that

Q = z′Dz = z′z

Q =
n∑
i=1

χ2
1(µ′Σ−1/2tit

′
iΣ
−1/2µ)

Q = χ2
n

(
µ′Σ−1/2

(
n∑
i=1

tit
′
i

)
Σ−1/2µ

)

Since
∑n

i=1 tit
′
i = T′DT = Σ1/2AΣ1/2 = I, we have that

Q ∼ χ2
n(µ′Σ−1µ)

Let y ∼ N (0,Σ) and Q = y′Ay. What is the MGF of Q?

ΨQ(t) = E(etQ) =

∫
ety
′Ay e−

1
2
y′Σ−1y

(2π)p/2|Σ|1/2
dy

=

∫
e−

1
2
y′(Σ−1−2tA)y

(2π)p/2|Σ|1/2
dy

=

∫
e−

1
2
y′((Σ−1−2tA)−1)−1y

(2π)p/2|Σ|1/2|(Σ−1 − 2tA)−1|1/2|Σ−1 − 2tA|1/2
dy

=
1

|Σ|1/2|Σ−1 − 2tA|1/2

For t sufficiently small enough. If we have that Σ = I, then we have

=
1

|I− 2tA|1/2

Using the spectral decomposition of A, we have

=
1

|T′T− 2tT′DT|1/2
=

1

|I− 2tD|1/2
=

1

(1− 2t)r/2
t < 1/2

We can see that this is the MGF of a χ2
r distribution.

Theorem 19 (Craig’s Theorem) Let y ∼ Np(0,Σ) and Qi = y′Aiy i = 1, 2. Then Q1 ⊥⊥
Q2 iff A1ΣA2 = 0.
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2.3 Non-Central Distributions

Proof:

ΨQ1,Q2(t1, t2) = E(et1Q1+t2Q2) =

∫
ey
′(t1A1+t2A2)y e−

1
2
y′Σ−1y

(2π)p/2|Σ|1/2
dy

=

∫
e−

1
2
y′(Σ−1−(2t1A1+2t2A2))y

(2π)p/2|Σ|1/2
dy

=

∫
e−

1
2
y′((Σ−1−(2t1A1+2t2A2))−1)−1y

(2π)p/2|Σ|1/2|(Σ−1 − 2t1A1 − 2t2A2)−1|1/2|Σ−1 − 2t1A1 − 2t2A2|1/2
dy

=
1

|Σ|1/2|Σ−1 − 2t1A1 − 2t2A2|1/2

=
1

|I− 2t1ΣA1 − 2t2ΣA2|1/2

=
1

|I− 2t1ΣA1 − 2t2ΣA2 + 4t1t2A1ΣA2 − 4t1t2A1ΣA2|1/2

=
1

|(I− 2t1ΣA1)(I− 2t2ΣA2)− 4t1t2A1ΣA2|1/2
(∗)

From above, we know that the MGF of the joint independent Q1 and Q2 would be

1

|I− 2t1ΣA1|1/2|I− 2t2ΣA2|1/2
(∗∗)

We can see that (∗) and (∗∗) equal each other iff and only if 4t1t2A1ΣA2 for all t1, t2 in a
sufficiently small neighborhood around 0. We can see this can only happen if A1ΣA2 = 0.
Therefore, we have that Q1 ⊥⊥ Q2 iff A1ΣA2 = 0. �

Theorem 20 (Loyne’s Theorem) Let M2 = M = M′ and P ≥ 0. If I −M − P > 0, then
MP = PM = 0.

Proof: Let x ∈ Rp and y = Mx. Then we have that

0 ≤ y′(I−M−P)y

= x′M′(I−M−P)Mx

= x′(M−M−MP)Mx

= −x′MPMx

= −y′Py ≤ 0 =⇒ Py = 0

Thus we have PMx = 0 for all x ∈ Rp. Therefore, we have PM = MP = 0. �

Lemma 24 (Graybill and Marsaglia’s Lemma) Let D′i = Di i = 1, . . . , k and D =∑K
i=1 Dii. Then any of the two following statements imply the third:

1. D2
i = Di

2. D2 = D

3. DiDj = 0
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2 Multivariate, Quadratic Forms, and Other Distributions

Proof: (1 + 2 =⇒ 3)

Since (2) holds, we know that D is idempotent. Therefore, we know that I−D is idempotent.
Thus we have

I−Di −Dj = I−D + D−Di −Dj

We know that I − D is positive semi-definite, symmetric, and idempotent. We know that
D−Di−Dj =

∑
k 6= i, jDk. Since by 1, Di is idempotent and therefore positive semi-definite,

we have that
∑
k 6= i, jDk is positive semi-definite. Thus we have that

I−Di −Dj ≥ 0

Thus by Lyone’s Theorem, we have that DiDj = 0 ∀i 6= j.

(1 + 3 =⇒ 2)

D2 =

(
K∑
i=1

Di

)2

K∑
i=1

D2
i +

∑
i 6= jDiDj

=
K∑
i=1

Di + 0 = D

(2 + 3 =⇒ 1)

Let λ be an eigenvalue of Di. Then there exists x 6= 0 such that Dix = λx. If λ 6= 0, then
x = Dix

λ . Thus we have

Dx =
DDix

λ
=

(∑K
i=1 Di

)
Dix

λ
=

D2
ix

λ
= Di

(
Dix

λ

)
= Dix = λx

Since by (2) we have that D2 = D, we have that λ = 1. Thus the eigenvalues of Di are 0 or 1.
Therefore, we know that Di is idempotent. �

Theorem 21 (Cochran’s Theorem) Let y ∼ Np(0, I) and suppose that y′y =
∑K

i=1Qi,
where Qi = y′Aiy where A′i = Ai and has rank ri for i = 1, . . . ,K. Then we have that the
following are equivalent:

1. Qi ⊥⊥ Qj 1 ≤ i 6= j ≤ K

2. Qi ∼ χ2
ri i = 1, . . . ,K

3.
∑K

i=1 ri = p

Proof: (1 =⇒ 2)

We know that Qi ⊥⊥ Qj 1 ≤ i 6= j ≤ K. Thus we have that

y′A‘y ⊥⊥ y′(A2 + · · ·+ AK)y = y′(I−A1)y

By Craig’s Theorem, we know this is true iff A1(I −A1) = 0. Therefore, we have A1 = A2
1.

Thus by the Fundamental Theorem of Quadratic Forms, we have that y′A1y ∼ χ2
r1 . Similarly,

we can show that y′Aiy ∼ χ2
ri for i = 2, . . . ,K. Thus we have y′Aiy ∼ χ2

ri for i = 1, . . . ,K.

(2 =⇒ 3)
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2.3 Non-Central Distributions

By the setup, we know that
∑K

i=1 Ai = I. By the Fundamental Theorem of Quadratic Forms,
we have that A2

i = Ai. Thus we know that tr(Ai) = rank(Ai). Thus we have

K∑
i=1

ri =
K∑
i=1

tr(Ai) = tr(
K∑
i=1

Ai) = tr(I) = p

(3 =⇒ 1)
We know that I =

∑K
i=1 Ai. Thus we can decompose it in the following way:

I = A1 + (I−A1)

Using the spectral decomposition of A1, we have

T′IT = TA1T + T′(I−A)T

=


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

 =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λp

+


d1 0 . . . 0
0 d2 . . . 0
...

...
. . .

...
0 0 . . . dp


We know that λi’s are eigenvalues of A1. Since rank(A1) = r1, only r1 of them are non-zero.

diag(1, . . . , 1) = diag(λ1, . . . , λr1 , 0, . . . , 0) + diag(d1, . . . , dr1 , dr1 , . . . , dn)

This implies that dr1+1 = · · · = dp = 1. Since rank(T′(I−A1)T) = rank(I−A) = p− r1, we
know that di = 0 for i = 1, . . . , r1.
Since we know that I−A1 = A2 + A3 + · · ·+ AK . Consider T′AjT. We know that the first r1

diagonal elements cannot be non-zero (if they were, then rank(A2 + A3 + · · ·+ AK) > p− r1.)
Thus we know that

A1Aj = diag(λ1, . . . , λr1 , 0, . . . , 0)diag(0, . . . , 0, lr1+1, . . . lp) = 0

Therefore, by Craig’s Theorem, we know that Q1 ⊥⊥ Qj for j = 2, . . . ,K. Similarly, we can
replace A1 with Aj (j = 2, . . . ,K) to get the result that Qi ⊥⊥ Qj 1 ≤ i 6= j ≤ K. �
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3.1 Least Squares Estimate

Consider the following model:
y = Xβ + ε

where X is full column rank. We wish to find the parameter estimates of β (β̂) such that
ε′ε is minimized. One way to do this would be to take the derivative and solve the normal
equations to get the least squares estimate. Another way would be to use to use the Ap-
proximation Theorem (theorem 6). We know that ε′ε = ||y − Xβ||2. Thus we know that
Xβ̂ = PX(y) = X(X′X)−1X′y (proof of PX(y) = X(X′X)−1X′y can be found after the
Approximation Theorem).
In order to perform inference on the model, we need to specify some properties of ε. Thus
consider the following model:

y = Xβ + ε E(ε) = 0 var(ε) = σ2I

Thus we can establish some properties of β̂.

1. E(β̂) = (X′X)−1X′E(y) = (X′X)−1X′Xβ = β

2. var(β̂) = (X′X)−1X′var(y)X(X′X)−1 = σ2(X′X)−1X′X(X′X)−1 = σ2(X′X)−1

Theorem 22 (Gauss-Markov Theorem) Let θ̂ be the least squares estimate of θ = xβ,
where θ ∈ C(X). Then among the class of linear unbiased estimates of c′θ, c′θ̂ is the unique
estimate with minimum variance.

Proof: We know that c′θ̂ = c′PXy. Let d′y be any other unbiased estimate of c′θ. Thus we
have

c′θ = E(d′y) = d′θ =⇒ (c− d)′θ = 0

Thus we have that c− d ⊥⊥ C(X). Therefore, we know that

PX(c− d) = 0 =⇒ PXc = PXd

Thus we have

var(c′θ̂) = var(cPXy) = var((PXd)′y) = (PXd)′σ2I(PXd)

= σ2d′PXPXd = σ2d′PXd

Thus consider

var(d′y)− var(c′θ̂) = d′σ2Id− σ2d′PXd = σ2d′(I−PX)d

= σ2d′(I−PX)(I−PX)d = σ2d1d1 ≥ 0

Note that σ2d′1d1 = 0 ⇐⇒ d′(I − PX) = 0 or d = PXd = PXc. Thus we have
d′y = c′PXy = c′θ̂. Therefore, c′θ̂ has the minimum variance, and is unique �

Lemma 25 If X has full rank, then a′β̂ is the BLUE (Best Linear Unbiased Estimate) of a′β
for every vector a.
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Proof: We know that θ = Xθ. Thus we have that β = (X′X)−1X′θ and β̂ = (X′X)−1X′θ̂.
Therefore we can let c′ = a′(X′X)−1X′, and use the Gauss-Markov Theorem to prove that a′β̂
is the BLUE (Best Linear Unbiased Estimate) of a′β for every vector a. �

Earlier in this section, we figured out that var(β̂) = σ2(X′X)−1, but how do we estimate σ2?

Theorem 23 If E(y) = Xβ, where X is an n× p of rank r ≤ p, and var(y) = σ2I, then

S2 =
(y − θ̂)′(y − θ̂)

n− r
=
RSS

n− r

is an unbiased estimate of σ2.

Proof: We know that y − θ̂ = (I−PX)y. Thus we can rewrite S2 as

S2 =
y(I−PX)y

n− r

Taking the expectation of S2, we have

E(S2) =
E(y(I−PX)y)

n− r
=
tr((I−PX)σ2I) + E(y)′(I−PX)E(y)

n− r

=
(n− r)σ2 + β′X′(I−PX)Xβ

n− r
=

(n− r)σ2 + β′X′Xβ − β′X′Xβ

n− r

=
σ2(n− r)
n− r

= σ2

Therefore, we can see that S2 = (y−θ̂)′(y−θ̂)
n−r = RSS

n−r is an unbiased estimate of σ2. �

Suppose we want to know the variance of S2. We know that

(n− r)S2

σ2
=

y′

σ
(I−PX)

y

σ
∼ χ2

n−r(β
′X′(I−PX)Xβ = 0)

Thus we know that

var

(
(n− r)S2

σ2

)
= 2(n− r)

=⇒ var(S2) =
2σ4

n− r

Theorem 24 If y ∼ Nn(Xβ, σ2In), where X is n× p of rank p, then:

1. β̂ ∼ Np(β, σ2(X′X)−1)

2. (β̂ − β)′X′X(β̂ − β)/σ2 ∼ χ2
p

3. β̂ is independent of S2

4. RSS/σ2 = (n− p)S2/σ2 ∼ χ2
n−p
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3.2 Adding Further Explanatory Variables

Proof: (1)
We know that β̂ = (X′X)−1X′y and that y ∼ Nn(Xβ, σ2In). Thus we have

β̂ ∼ Np((X′X)−1X′Xβ = β, σ2(X′X)−1X′X(X′X)−1 = σ2(X′X)−1)

(2)

We know that z = β̂−β
σ ∼ Np(0, (X′X)−1). Thus consider z′(X′X)z. We know that z′(X′X)z ∼

χ2
p ⇐⇒ (X′X)Σ(X′X) = (X′X). Thus we have that

(X′X)Σ(X′X) = (X′X)(X′X)−1(X′X) = (X′X)

. Thus we know that (β̂ − β)′X′X(β̂ − β)/σ2 ∼ χ2
p

(3)
In order to prove that S2 is independent of β̂, it is sufficient to show that V = β̂ ⊥⊥ U =
(I−PX)y. We know that β̂ ⊥= (X′X)−1X′y. Thus we can see that[
U
V

]
=

[
(X′X)−1X′

I−X(X′X)−1X′

]
y ∼ N

([
β

y −Xβ

]
, σ2

[
(X′X)−1X′

I−X(X′X)−1X′

] [
X(X′X)−1 I−X(X′X)−1X′

])
Thus we have that[

U
V

]
∼ N

([
β

y −Xβ

]
, σ2

[
(X′X)−1 0

0 I−X(X′X)−1X′

])
Thus, by the properties of normal distributions, we know that V ⊥⊥ U. Therefore, by lemma,
we know that V ⊥⊥ U′U or β̂ ⊥⊥ S2.
(4)
We know that

RSS = y′(I−PX)y

Notice that

(y −Xβ)′(I−PX)′(y −Xβ) = y′(I−PX)y − 2y′(I−PX)Xβ + β′X′(I−PX)′Xβ

Since y′(I−PX)Xβ = 0 and β′X′(I−PX)′Xβ = 0, we have

(y −Xβ)′(I−PX)′(y −Xβ) = y′(I−PX)y = ε′(I−PX)ε

Where ε ∼ Nn(0, σ2I). Thus we know that ε
σ ∼ Nn(0, I). Thus by the Fundamental Theorem

of Quadratic Form, since I−PX is idempotent, we have that RSS
σ2 = ε′

σ (I−PX) ε
σ ∼ χ

2
n−p �

3.2 Adding Further Explanatory Variables

3.2.1 Mutually Orthogonal Columns of Design Matrix

We will first consider the case where the columns of X are mutually orthogonal. Let

X = (x0,x1, . . . ,xp−1)

Thus we have that
β̂ = (X′X)−1X′y

=


x′0x0 0 . . . 0

0 x′1x1 . . . 0
...

...
. . .

...
0 0 . . . x′p−1xp−1


−1 

x′0y
x′1y

...
x′p−1y


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3 Linear Regression

=


(x′0x0)−1x′0y
(x′1x1)−1x′1y

...
(x′p−1xp−1)−1x′p−1y


Thus we can see that β̂j = x′jy/(x

′
jxj). We can compute the residual sum of squares:

RSS = (y −Xβ̂)′(y −Xβ̂)′ = y′y − 2y′Xβ̂ + β̂
′
X′Xβ̂

= y′y − 2y′X(X′X)−1X′y + y′X(X′X)−1X′y = y′y − y′X(X′X)−1X′y

= y′y − y′Xβ̂

= y′y −
p−1∑
i=0

β̂ix
′
iy

We know that y = β̂jxj for any j. Thus we have

RSS = y′y −
p−1∑
i=0

β̂2
i (x′ixi)

Thus if we remove the jth predictor, we would have the following residual sum of squares:

RSS−j = y′y −
p−1∑

i=0,i 6=j
β̂2
i (x′ixi)

Thus we have

RSS −RSS−j = β̂2
j (x′jxj)

3.2.2 General Design Matrix

Suppose we start with the following model:

E(y) = Xβ, var(y) = σ2I

where X is n× p. Suppose we wish to add a set of new explanatory variables Z ∈ Rn×t. Thus
we have

E(y) = XβG + ZγG

=
[
X Z

] [βG
γG

]
= Wδ

Thus we know that

δ̂ = (W′W)−1W′y var(δ̂) = σ2(W′W)−1

From the linear algebra sections, we know that we can represent Z as Z = PXZ + (I−PX)Z.
Thus we have

E(y) = XβG + (PXZ + (I−PX)Z)γG

= X(βG + (X′X)−1X′ZγG) + (I−PX)ZγG

= Xα + (I−PX)ZγG
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3.2 Adding Further Explanatory Variables

Notice that X ⊥⊥ (I − PX)Z. Thus we can use the orthogonal columns of the design matrix.
Thus we have that

δ̂ =

[
(X′X)−1 0

0 (Z′(I−PX)Z)−1

] [
X′y

Z′(I−PX)y

]

δ̂ =

[
(X′X)−1X′y

(Z′(I−PX)Z)−1Z′(I−PX)y

]
Thus we have that

α̂ = β̂G + (X′X)−1X′Zγ̂G = (X′X)−1X′y

and

γ̂G = (Z′(I−PX)Z)−1Z′(I−PX)y

Thus we have that

β̂G = (X′X)−1X′y − (X′X)−1X′Z(Z′(I−PX)Z)−1Z′(I−PX)y

Let ŷG be the estimated outcomes from using the extended model.

SSEG = (y − ŷG)′(y − ŷG) = (y −Xβ̂G − Zγ̂G)′(y −Xβ̂G − Zγ̂G)

Notice that

y −Xβ̂G − Zγ̂G = y − (X((X′X)−1X′y − (X′X)−1X′Zγ̂G))− Zγ̂G

= (I−PX)y + (X(X′X)−1X′ − I)Zγ̂G

= (I−PX)(y − Zγ̂G)

Thus we have that

SSEG = (y − Zγ̂G)′(I−PX)(y − Zγ̂G)

= y′(I−PX)y − 2y′(I−PX)Zγ̂G + γ̂ ′GZ′(I−PX)Zγ̂G

= y′(I−PX)y − γ̂ ′G(Z′(I−PX)y − Z′(I−PX)Zγ̂G)− y′(I−PX)Zγ̂G

Notice that Z′(I−PX)Zγ̂G = Z′(I−PX)Z(Z′(I−PX)Z)−1Z′(I−PX)y = Z′(I−PX)y. Thus
we have

SSEG = y′(I−PX)y − y′(I−PX)Zγ̂G

= SSE − y′(I−PX)Z(Z′(I−PX)Z)−1Z′(I−PX)y

Notice that SSEG ≤ SSE since y′(I−PX)Z(Z′(I−PX)Z)−1Z′(I−PX)y ≥ 0. Therefore, we
have that SSE will go down as we add more predictors. But is there a price to adding more
predictors? Consider

Cov(β̂G) = cov(β̂ − (X′X)−1X′Zγ̂)

= var(β̂) + (X′X)−1X′Zvar(γ̂)Z′X(X′X)−1 − 2cov(β̂, (X′X)−1X′Zγ̂)

= σ2(X′X)−1 + σ2(X′X)−1X′Z(Z′(I−PX)Z)−1Z′X(X′X)−1 + 0

Thus we can see that the variance of β̂G is at least as large as β̂. Therefore, adding more
predictors often increases the variance of your estimated regression coefficients.
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3.3 Linear Regression with Linear Restrictions

Consider the following model

y = XβH + ε s.t. AβH = c

where X ∈ Rn×p with rank p, A ∈ Rq×p of rank q and c is a known vector of length q. Suppose
that β0 is any solution of Aβ = c. Then we have

y −Xβ0 = X(βH − β0) + ε

Thus we can transform our problem into the following problem

ỹ = Xγ + ε and Aγ = AβH −Aβ0 = 0

Thus we have the model where ỹ = θ + ε where θ ∈ C(X). We know that

A(X′X)−1X′θ = A(X′X)−1X′Xγ = Aγ = 0

Thus we can see that θ ∈ N (A(X′X)−1X′). Let A1 = A(X′X)−1X′ and ω = N (A1) ∩ C(X).
Thus we can see that we wish to find θ̂ ∈ ω. Thus we have

Xγ̂ = PωỸ = PC(X)ỹ −Pω⊥∩C(X)ỹ

We are just left to find what Pω⊥∩C(X)ỹ is. From an identity, we know that ω⊥ ∩ C(X) =
C(PC(X)A

′
1) where

PC(X)A
′
1 = X(X′X)−1X′X(X′X)−1A′ = X(X′X)−1A

Thus we have that

Pω⊥∩C(X) = (PC(X)A
′
1)(A1P

2
C(X)A

′
1)−1(A1PC(X))

= X(X′X)−1A′[A(X′X)−1A′]−1A(X′X)−1X′

Thus we have

Xγ̂ = PωỸ = PC(X)Ỹ −Pω⊥∩C(X)Ỹ

= X(X′X)−1X′y −X(X′X)−1X′Xβ0 −X(X′X)−1A′[A(X′X)−1A′]−1A(X′X)−1X′(y −Xβ0)

= X(X′X)−1X′y −X(X′X)−1X′Xβ0 −X(X′X)−1A′[A(X′X)−1A′]−1A(X′X)−1X′(y −Xβ0)

= X(X′X)−1X′y −Xβ0 −X(X′X)−1A′[A(X′X)−1A′]−1A(X′X)−1X′(y −Xβ0)

= X(X′X)−1X′y −Xβ0 −X(X′X)−1A′[A(X′X)−1A′]−1(Aβ̂ −Aβ0)

Since Aβ0 = c, we have

Xβ̂H −Xβ0 = X(X′X)−1X′y −Xβ0 −X(X′X)−1A′[A(X′X)−1A′]−1(Aβ̂ − c)

=⇒ β̂H = (X′X)−1X′y − (X′X)−1A′[A(X′X)−1A′]−1(Aβ̂ − c)

Therefore, we have

β̂H = β̂ − (X′X)−1A′[A(X′X)−1A′]−1(Aβ̂ − c)

where β̂H is the constrained estimate, and β̂ is the unconstrained estimate.
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3.4 Design Matrix of Less Than Full Rank

3.4 Design Matrix of Less Than Full Rank

Consider the following model

y = Xβ + ε, E(ε) = 0, var(ε) = σ2I

where X ∈ Rn×p is of rank r < p. Thus we can see that (X′X)−1 does not exist. What is
the orthogonal projector onto the column space of X? We can show that X(X′X)−X′ is the
orthogonal projector onto the column space of X. Note that there is no linear unbiased estimator
of β when rank(X) < p. If E(y) = Xβ, then we desire a matrix C such that E(Cy) = β. In
order to have this be true, we would need

CXβ = β

This implies that CX = I, which is not possible since X is not full rank (but I is). Therefore, it
is impossible for us to unbiasedly estimate every βi . However, it is possible for us to unbiasedly
estimate some linear functions of β using a linear function of y.

Definition 34 The parametric function a′β is said to be estimable if it has a linear unbiased
estimate b′y.

What implications does this definition have? Let a′y be an unbiased linear estimator of c′β.
By definition, c′β is estimable if

a′Xβ = E(a′y) = c′β ∀β

=⇒ c = X′a

Thus we can see that c has to be in the rowspace of X.

Theorem 25 c′β is estimable ⇐⇒ c′ = c′(X′X)−X′X.

Proof: ( =⇒ )
If c′β is estimable, then c = X′a for some a. Thus we have

c′(X′X)−X′X = a′X(X′X)−X′X = a′PXX = a′X = c′

Therefore, we have that c′ = c′(X′X)−X′X.
(⇐= )

E(c′(X′X)−X′y) = c′(X′X)−X′Xβ = c′β

Therefore, a′y with a′ = c′(X′X)−X′ is a linearly unbiased estimator of c′β. �

Lets look at an example. Consider the following one-way ANOVA model:

yij = µ+ τi + εij i = 1, . . . ,K j = 1, . . . , ni

where E(εij) = 0 and var(εij) = σ2. Our goal is to estimate β =


µ
τ1
...
τK

.

In matrix form, our model looks like:
y1∗
y2∗

...
yK∗

 =


1n1 1n1 0n1 . . . 0n1

1n2 0n2 1n2 . . . 0n2

...
...

...
. . .

...
1nK 0nK 0nK . . . 1nK



µ
τ1
...
τK


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We can see that X′X is
1′n1

1′n2
. . . 1′nK

1′n1
0′n2

. . . 0′nK
0′n1

1′n2
. . . 0′nK

...
...

. . .
...

0′n1
0′n2

. . . 1nK




1n1 1n1 0n1 . . . 0n1

1n2 0n2 1n2 . . . 0n2

...
...

...
. . .

...
1nK 0nK 0nK . . . 1nK

 =


n n1 n2 . . . nK
n1 n1 0 . . . 0
n2 0 n2 . . . 0
...

...
...

. . .
...

nk 0 0 . . . nK


where n =

∑K
i=1 ni. We know that (X′X)− takes the following form:

(X′X)− =


0 0 0 . . . 0
0 1

n1
0 . . . 0

0 0 1
n2

. . . 0
...

...
...

. . .
...

0 0 0 . . . 1
nK


Thus, consider

c′(X′X)−X′X =
[
c0 c1 c2 . . . cK

]


0 0 0 . . . 0
0 1

n1
0 . . . 0

0 0 1
n2

. . . 0
...

...
...

. . .
...

0 0 0 . . . 1
nK




n n1 n2 . . . nK
n1 n1 0 . . . 0
n2 0 n2 . . . 0
...

...
...

. . .
...

nk 0 0 . . . nK



=
[
c0 c1 c2 . . . cK

]


0 0 0 . . . 0
1 1 0 . . . 0
1 0 1 . . . 0
...

...
...

. . .
...

1 0 0 . . . 1


=
[∑K

i=1 ci c1 c2 . . . ck

]
Thus we have the following condition: c′β is estimable if and only if[

c0 c1 c2 . . . cK
]

=
[∑K

i=1 ci c1 c2 . . . ck

]
or equivalently if and only if c0 =

∑K
i=1 ci.

Are the following estimable?

1. τ1 − τ2+τ3
2 : yes

c′β =
[
0 1 −1/2 −1/2 0 . . . 0

]


µ
τ1

τ2

τ3

τ4
...
τK


Thus we can see that 0 = c0 =

∑K
i=1 ci = 1− 1/2− 1/2 = 0.
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3.5 Generalized Least Squares

2. µ+ τ1: yes

c′β =
[
1 1 0 . . . 0

]

µ
τ1

τ2
...
τK


Thus we can see that 1 = c0 =

∑K
i=1 ci = 1.

3. µ− τ1: no

c′β =
[
1 −1 0 . . . 0

]

µ
τ1

τ2
...
τK


Thus we can see that 1 = c0 6=

∑K
i=1 ci = −1.

3.5 Generalized Least Squares

Suppose we have the following model

y = Xβ + ε E(ε) = 0 var(ε) = σ2V

where V is a n× n positive definite matrix.

We know that we can take the square root of V = V1/2V1/2 since V is positive definite. We
also know that the inverse exists, so we have V−1 = V−1/2V−1/2Thus consider multiplying the
right side and the left side by V−1/2. Thus we have

V−1/2y = V−1/2Xβ + V−1/2ε

=⇒ z = Bβ + η

We can see that E(η) = V−1/20 = 0 and that var(η) = V−1/2VV−1/2 = V−1/2V1/2V1/2V−1/2 =
I. Thus we are back to our standard linear regression. Thus we have that

β̂ = (B′B)−1B′z = (X′V−1X)−1X′V−1y

We can derive the following properties of our estimate:

1. E(β̂) = (X′V−1X)−1X′V−1Xβ = β

2. var(β̂) = σ2(X′V−1X)−1X′V−1VV−1X(X′V−1X)−1 = σ2(X′V−1X)−1

3. η̂′η̂ = (Z−Bβ̂)′(Z−Bβ̂) = (y −Xβ̂)′V −1(y −Xβ̂)
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4 Hypothesis Testing and Inference

4.1 Likelihood Ratio Test

Consider the following linear model

G : Y = Xβ + ε ε ∼ N (0, σ2I)

Suppose that we wish to test the hypothesis H : Aβ = c, where A is q × p with rank q. The
likelihood function for G is

L(β, σ2) = (2πσ2)−n/2exp

[
− 1

2σ2
||y −Xβ||2

]
It can be shown that the MLE estimates for β and σ2 are β̂ = (X′X)−1X′y and σ̂2 = ||y −
Xβ̂||2/n. Thus we have that

L(β̂, σ̂2) = (2πσ̂2)−n/2exp

[
− n

2||y −Xβ̂||2
||y −Xβ̂||2

]

= (2πσ̂2)−n/2exp
[
−n

2

]
The next step is to find β̂H and σ̂2

H which are the MLE estimates subject to Aβ̂H = c. We can
use the Lagrange multiplier approach to solve this problem. If you use this method, we will get
that

β̂H = β̂ − (X′X)−1A′[A(X′X)−1A′]−1(Aβ̂ − c)

Notice that this is the same estimate as in section 3.3. We will also get that σ̂2
H = ||y−Xβ̂H ||2/n.

Thus we will get that

L(β̂H , σ̂
2
H) = (2πσ̂2

H)−n/2exp
[
−n

2

]
Thus we can calculate the likelihood ratio test, which is given by

Λ =
L(β̂H , σ̂

2
H)

L(β̂, σ̂2)
=

(
σ̂2

σ̂2
H

)n/2
We will reject H if Λ is too small.

4.2 F -test

As stated in section 4.1, we know the the likelihood ratio test does not account for the difference
in precision of the elements of Aβ̂. One way to do this is to define a distance measure which
depends on the covariance matrix of Aβ̂. Consider using the following quadratic form:

(Aβ̂ − c)′(var(Aβ̂))−1(Aβ̂ − c)

where var(Aβ̂) = σ2A(X′X)−1A′. Let us define

RSS = ||y −Xβ̂||2 = (n− p)S2
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4 Hypothesis Testing and Inference

RSSH = ||y −Xβ̂H ||2

from section 3.3, we know that

β̂H = β̂ − (X′X)−1A′[A(X′X)−1A′]−1(Aβ̂ − c)

Theorem 26

1. RSSH −RSS = ||ŷ − ŷH ||2 = (Aβ̂ − c)′[A(X′X)−1A′]−1(Aβ̂ − c)

2. E[RSSH −RSS] = σ2q + (Aβ − c)′[A(X′X)−1A′]−1(Aβ − c)

3. When H is true,

F =
(RSSH −RSS)/q

RSS/(n− p)
=

= (Aβ̂ − c)′[A(X′X)−1A′]−1(Aβ̂ − c)

qS2

is distributed Fq,n−p.

4. When c = 0, F can be expressed in the form

F =
n− p
q

Y′(PX −PH)Y

Y′(I−PX)Y

Where PH = PX−PX1 where PX1 is the projection onto the variables that we are testing
if they are equal to zero.

Proof:

1.
RSSH −RSS = ||y −Xβ̂H ||2 − ||y −Xβ̂||2 = ||y − ŷH ||2 − ||y − ŷ||2

We know that
||y −Xβ̂H ||2 − ||y −Xβ̂||2 = ||X(β̂H − β̂)||2

Thus letting ŷ = Xβ̂ and ŷH = Xβ̂H , we have

||y − ŷH ||2 − ||y − ŷ||2 = ||ŷH − ŷ||2

Thus we have
RSSH −RSS = ||y − ŷH ||2 − ||y − ŷ||2

= ||X(β̂H − β̂)||2 = (β̂H − β̂)′X′X(β̂H − β̂)

Using the least squares estimate of βH , we have

(Aβ̂ − c)′[A(X′X)−1A′]−1A(X′X)−1X′X(X′X)−1A′[A(X′X)−1A′]−1(Aβ̂ − c)

Thus we have

RSSH −RSS = (Aβ̂ − c)′[A(X′X)−1A′]−1(Aβ̂ − c)

2. Consider z = Aβ̂ − c. We know that z ∼ N (Aβ − c, σ2A(X′X)−1A′). From chapter 2,
we know that

E(RSSH −RSS) = tr(σ2[A(X′X)−1A′]−1A(X′X)−1A′) + E(z)′[A(X′X)−1A′]−1E(z)

= tr(σ2Iq) + (Aβ − c)′[A(X′X)−1A′]−1(Aβ − c)

= σ2q + (Aβ − c)′[A(X′X)−1A′]−1(Aβ − c)
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4.2 F -test

3. Under H, we know that Aβ̂ − c ∼ N (0, σ2A(X′X)−1A′). Thus by theorem, we know
that

RSSH −RSS
σ2

=
(Aβ̂ − c)′[A(X′X)−1A′]−1(Aβ̂ − c)

σ2
∼ χ2

q

We know that
(RSSH −RSS)/q

RSS/(n− p)
∼ Fq,n−p

if (RSSH − RSS) ⊥⊥ RSS. We know that RSSH ∼ χ2
n−p−q and RSS ∼ χ2

n−p. We also
know that RSSH −RSS ≥ 0. Thus by lemma 23, we know that (RSSH −RSS) ⊥⊥ RSS,
so we have that

(RSSH −RSS)/q

RSS/(n− p)
∼ Fq,n−p

4. We can see that
ŷH = Xβ̂H

=
[
X(X′X)−1X′ − (X′X)−1A′(A(X′X)−1A′)−1A(X′X)−1X′

]
y

= (PX −PX1)y = PHy

One can show that PH is idempotent and symmetric. Thus we have that

RSSH = ||y −Xβ̂H ||2 = y′(I−PH)y

Thus we also have that

RSSH −RSS = y′(I−PH)y − y′(I−PX)y = y′(PX −PH)y

Thus we can see that

F =
n− p
q

Y′(PX −PH)Y

Y′(I−PX)Y

�

Consider the following example. Let U1, . . . , Un1 be sampled independently from N (µ1, σ
2),

and let V1, . . . , Vn2 be sampled independently from N (µ2, σ
2). Suppose that we wish to test the

following hypothesis:
H0 : µ1 = µ2

We can see that we have the following model:

Ui = µ1 + εi (i = 1, . . . , n1)

Vi = µ2 + εi (i = n1 + 1, . . . , n1 + n2)

where εi ∼ N (0, σ2). Thus consider the following matrix representation of our model:

U1
...
Un1

V1
...
Vn2


=



1 0
...

...
1 0
0 1
...

...
0 1


[
µ1

µ2

]
+



ε1
...
εn1

εn1+1
...

εn1+n2


Thus our model is of the form y = Xβ + ε, where ε ∼ N (0, σ2I). We can also rewrite our
hypothesis in the following form:

Aβ = c =
[
1 −1

] [µ1

µ2

]
=
[
0
]
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4 Hypothesis Testing and Inference

We can see that

X′X =

[
n1 0
0 n2

]
(X′Y) =

[∑n1
i=1 Ui∑n2
i=1 Vi

]
Thus we have that β̂ = (X′X)−1X′y =

[
Ū
V̄

]
. From theorem 26, we know that our test statistic

has the following form

F =
(RSSH −RSS)/q

RSS/(n− p)
=

= (Aβ̂ − c)′[A(X′X)−1A′]−1(Aβ̂ − c)

qS2

We have that
Aβ̂ = Ū − V̄

A(X′X)−1A′ =
1

n1
− 1

n2
=
n2 − n1

n1n2

S2 =
RSS

n1 + n2 − 2
=

y′(I−PX)y

n1 + n2 − 2
=

∑n1
i=1 U

2
i +

∑n2
i=1 V

2
i − n1Ū

2 − n2V̄
2

n1 + n2 − 2

=

∑n1
i=1(Ui − Ū)2 +

∑n2
i=1(Vi − V̄ )2

n1 + n2 − 2
=

(n1 − 1)S2
1 + (n2 − 1)S2

2

n1 + n2 − 2

Thus we have that

F =
(Ū − V̄ )2

S2

n1
− S2

n2

∼ F1,n1+n2−2

4.3 Multiple Correlation Coefficient

We will start with trying interpret βp in a geometric sense. Thus lets define Vp−1 = L(x1, . . . ,xp−1).
Let

x̂p = PVp−1xp

x̂⊥p = (I−PVp−1)xp

Thus we can see that xp = x̂p + x̂⊥p . We can see that we are decomposing xp into a part that
is in the linear span of {x1, . . . ,xp−1} and a part that is not in the span. Notice that

||x̂⊥p ||2 = 〈x̂⊥p , x̂⊥p 〉 = 〈xp −PVp−1xp, x̂
⊥
p 〉

= 〈xp, x̂⊥p 〉 − 〈PVp−1xp, x̂
⊥
p 〉

= 〈xp, x̂⊥p 〉

Since PVp−1xp = x̂p ⊥ x̂⊥p . Let θ̂ = Xβ̂. Thus we can see that

〈θ̂, x̂⊥p 〉 = 〈Xβ̂, x̂⊥p 〉 = 〈β̂pxp, x̂⊥p 〉 = βp||x̂⊥p ||2

=⇒ β̂p =
〈θ̂, x̂⊥p 〉
||x̂⊥p ||2

Thus we can see that x̂⊥p measures the part of xk that contributes to the linear relationship of
y and xp after accounting for the linear effects of x1, . . . ,xp−1. Lets consider the covariance of

β̂j and β̂i. In order to do that, we have to use the fact that β̂p =
〈y,x̂⊥p 〉
||x̂⊥p ||2

.

cov(β̂j , β̂i) = cov

(
〈y, x̂⊥i 〉
||x̂⊥i ||2

,
〈y, x̂⊥j 〉
||x̂⊥j ||2

)
=

(x̂⊥i )′var(y)x̂⊥j

||x̂⊥i ||2||x̂⊥j ||2
=

(x̂⊥i )′σ2x̂⊥j

||x̂⊥i ||2||x̂⊥j ||2
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4.3 Multiple Correlation Coefficient

We also know that
cov(β̂j , β̂i) = σ2(X′X)−1

ij

Thus we can see that

(X′X)−1
ij =

(x̂⊥i )′x̂⊥j

||x̂⊥i ||2||x̂⊥j ||2

Since we know that

cos(α) =
〈a, b〉
||a||||b||

where α is the angle between a and b, we have that

(X′X)−1
ij =

(cos(α))

||x̂⊥i ||||x̂⊥j ||

where α is the angle between x̂⊥i and x̂⊥j . Thus as the angle increases, the covariance between
the two estimates decreases.

Definition 35 Let Vk = {x1, . . .xk}. We define the Multiple Correlation Coefficient as

r =
||PVk

y −P1y||
||y −P1y||

=
||ŷk − ŷ0||
||y − ŷ0||

Notice that y − ŷk ∈ V⊥k and ŷk − ŷ0 ∈ Vk. Thus we have that

||y − ŷ0||2 = ||y − ŷk + ŷk − ŷ0||2 = ||y − ŷk||2 + ||ŷk − ŷ0||2

Definition 36 We define the Coefficient of Determination as

R2 = r2 =
||ŷk − ŷ0||2

||y − ŷ0||2
= 1− ||y − ŷk||

||y − ŷ0||
= 1− SSE

SSTO
=
SSReg

SSTO

What is the contribution of xk to the reduction of SSE? We know that

SSEk−1 − SSEk = y(I−PVk−1
)y − y(I−PVk−1

−Px̂⊥k
)y = y′Px̂⊥k

y

y′x̂⊥k ((x̂⊥k )′x̂⊥k )−1(x̂⊥k )′y =
〈y, x̂⊥k 〉2

||x̂⊥k ||2

Since we know that 〈y, x̂⊥k 〉 = β̂k||x̂⊥k ||2, we have

SSEk−1 − SSEk = β̂2
k||x̂⊥k ||2

Consider the t-test for testing whether βk − 0. We know the test statistic takes the following
form

t =
β̂k

ŝ.e(β̂k)

We will show the that the test statistic above has a relationship with the coefficient of deter-
mination. Let d = t2/(n− k). We will show that

R2
k =

d

d+ 1
(1−R2

k−1) +R2
k−1

Since we know that β̂k = y′x̂⊥k ((x̂⊥k )′x̂⊥k )−1((x̂⊥k )′x̂⊥k )−1(x̂⊥k )′y, we have that

d =
y′x̂⊥k ((x̂⊥k )′x̂⊥k )−1((x̂⊥k )′x̂⊥k )−1(x̂⊥k )′y

σ̂2(X′X)−1
kk (n− k)
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4 Hypothesis Testing and Inference

From above, we know that (X′X)−1
kk = 1

||x̂⊥k ||2
, and σ̂2 =

y(I−PVk
)y

n−k . Thus we have

d =
y′x̂⊥k ((x̂⊥k )′x̂⊥k )−1((x̂⊥k )′x̂⊥k )−1(x̂⊥k )′y||x̂⊥k ||2

y(I−PVk
)y

=
y′Px̂⊥k

y

y(I−PVk
)y

Thus we have that

d

1 + d
=

y′Px̂⊥k
y/y(I−PVk

)y

y′(I−PVk
)y + y′Px̂⊥k

y)/y(I−PX)y
=

y′Px̂⊥k
y

y′(I−PVk−1
)y

We know that

R2
k−1 =

y′(PVk−1
−P1)y

y′(I−P1)y

Thus we have that

d

d+ 1
(1−R2

k−1) +R2
k−1 =

y′Px̂⊥k
y

y′(I−PVk−1
)y

y′(I−PVk−1
)y

y′(I−P1)y
+

y′(PVk−1
−P1)y

y′(I−P1)y

=
y′Px̂⊥k

y

y′(I−P1)y
+

y′(PVk−1
−P1)y

y′(I−P1)y
=

y′(PVk−1
+ Px̂⊥k

−P1)y

y′(I−P1)y

Notice that PVk−1
+ Px̂⊥k

= PVk
, thus we have

d

d+ 1
(1−R2

k−1) +R2
k−1 =

y′(PVk
−P1)y

y′(I−P1)y
= R2

k

From a practical point of view, we can see that d
1+d =

R2
k−R

2
k−1

1−R2
k−1

. This can be interpreted as

the proportion of the variance explained by the kth predictor that is not explained by the k− 1
previous predictors. We can see that the proportion only depend on d.

Definition 37 Let v1,v2,x1, . . .xk ∈ Rn. Let V = L(x1, . . .xk), v̂1 = PVv1, and v̂2 = PVv2.
The Partial Correlation of v1 and v2 with the linear effects of x1, . . .xk removed is

rv1,v2.V =
〈v1 − v̂1,v2 − v̂2〉
||v1 − v̂1||||v2 − v̂2||

Not that we usually always remove the linear effect of 1. If 1 ∈ V then rv1,v2.V is scale invariant
and also invariant to translation.
Consider a multiple regression model of y on x1, . . . ,xk. Let us define the following

Vk−1 = L(x1, . . . ,xk−1)

Vk = L(x1, . . . ,xk)

ŷk−1 = PVk−1
y

ŷk = PVk
y

x⊥k = xk −PVk−1
xk

e = y − ŷk

We can see that ŷk = ŷk−1 + β̂kx
⊥
k . We can decompose y and xk into orthogonal components

as follows:
y = ŷk−1 + β̂kx

⊥
k + (y − ŷk)

xk = PVk−1
x + x⊥k
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4.3 Multiple Correlation Coefficient

We can use this to find the correlation coefficient of y and xk when accounting for the linear
effects of x1, . . . ,xk. Thus we have

ry,xk.x1,...,xk−1
=
〈y − ŷk−1,x

⊥
k 〉

||y − ŷk−1||||x⊥k ||
=
〈β̂kx⊥k + e,x⊥k 〉
||β̂kx⊥k + e||||x⊥k ||

Since e ⊥ x⊥k , we have

ry,xk.x1,...,xk−1
=

〈β̂kx⊥k ,x⊥k 〉
||β̂kx⊥k + e||||x⊥k ||

=
β̂k||x⊥k ||2

||β̂kx⊥k + e||||x⊥k ||

Since e ⊥ x⊥k , we know that ||e + x⊥k || = ||e||+ ||x⊥k ||. Thus we have

ry,xk.x1,...,xk−1
=

β̂k||x⊥k ||
||β̂kx⊥k ||+ ||e||

=
β̂k||x⊥k ||√

||β̂kx⊥k ||2 + ||e||2
=

β̂k||x⊥k ||

||e||
√
||β̂kx⊥k ||2
||e||2 + 1

Thus we can see that the partial correlation of y and xk with the linear effects of x1, . . . ,xk−1

removed is t/
√
n−k√

1+t2/(n−k)
.

Lets look at the relationship between rx1,x2.V1 and rx1,x2.V2 , where V1 = L(x3, . . . ,xk) and
V2 = L(x4, . . . ,xk). Thus we have

rx1,x2.V1 =
〈x1 − (PV2x1 + Px⊥3

x1),x2 − (PV2x2 + Px⊥3
x2)〉

||x1 − (PV2x1 + Px⊥3
x1)||||x2 − (PV2x2 + Px⊥3

x2)||

Letting x⊥i = xi −PV2xi, we have

xi − (PV2xi + Px⊥3
xi) = x⊥i −

〈x⊥3 ,xi〉x⊥3
||x⊥3 ||

We can also see that 〈x⊥3 ,xi〉 = 〈x⊥3 ,x⊥i + PV2xi〉 = 〈x⊥3 ,x⊥i 〉. Thus we have

xi − (PV2xi + Px⊥3
xi) = x⊥i −

〈x⊥3 ,x⊥i 〉x⊥3
||x⊥3 ||

WLOG, we can assume that ||x⊥i || = 1 for i = 1, 2, 3. Thus we have

rx1,x2.V1 =
〈x⊥1 − 〈x⊥3 ,x⊥1 〉x⊥3 ,x⊥2 − 〈x⊥3 ,x⊥2 〉x⊥3 〉
||x⊥1 〈x⊥3 ,x⊥1 〉x⊥3 ||||x⊥2 〈x⊥3 ,x⊥2 〉x⊥3 ||

=
〈x⊥1 ,x⊥2 〉 − 2〈x⊥1 ,x⊥3 〉〈x⊥3 ,x⊥2 〉+ 〈x⊥1 ,x⊥3 〉〈x⊥3 ,x⊥2 〉√

〈x⊥1 ,x⊥1 〉 − 2〈x⊥3 ,x⊥1 〉2 + 〈x⊥3 ,x⊥1 〉2
√
〈x⊥2 ,x⊥2 〉 − 2〈x⊥3 ,x⊥2 〉2 + 〈x⊥3 ,x⊥2 〉2

=
〈x⊥1 ,x⊥2 〉 − 〈x⊥1 ,x⊥3 〉〈x⊥3 ,x⊥2 〉√
1− 〈x⊥3 ,x⊥1 〉2

√
1− 〈x⊥3 ,x⊥2 〉2

Since we know that rx1,x2.V2 = 〈x⊥1 ,x⊥2 〉, rx1,x3.V2 = 〈x⊥1 ,x⊥3 〉, and rx2,x3.V2 = 〈x⊥2 ,x⊥3 〉, we
have

rx1,x2.V1 =
rx1,x2.V2 − rx1,x3.V2rx2,x3.V2√

1− r2
x1,x3.V2

√
1− r2

x2,x3.V2
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4 Hypothesis Testing and Inference

4.4 Simultaneous Confidence Intervals and Regions

Consider the following model

y = Xβ + ε ε ∼ N (0, σ2I)

We know from previous classes that a confidence interval for βj would take take the following
form

β̂j ± tα/2n−pσ̂
2(X′X)−1

jj

Suppose we do this for each ˆbetai. Thus even though the probability that any one confidence
interval contains the true βj is 1 − α, the probability that all the confidence intervals contain
the true parameters is not 1 − α. Let Ei be the event that the ith 100(1 − αi)% confidence
interval contains the true value of β. Thus we know that P (Ei) = 1− αi. Thus if we want the
probability that all confidence intervals contain the true parameter value, we have:

1− δ = p(∩mi=1Ei) = 1− P (∪mi=1E
c
i )

≥ 1−
m∑
i=1

P (Eci ) = 1−
m∑
i=1

αi

Definition 38 We call the value δ the Familywise Error Rate.

4.4.1 Bonferroni

Consider the case when α1 = · · · = αm = α. Thus we have that

1− δ ≥ 1−mα

Thus if we want δ = δ̃, then we can pick α = δ
m . Therefore, we can see that we will achieve this

Familywise Error rate at the minimum. This method is known as the Bonferroni Adjustment.
While this controls the FWE, this can become overly conservative when m is large.

4.4.2 Scheffe’s Method

Consider the standard linear model

y = Xβ + ε ε ∼ N (0, σ2I)

Suppose we want to test Aβ = c, where rank of A is q. Suppose we want to construct 100(1−α)
confidence intervals for making inference on a1β, . . . ,aqβ, where A′ = (a1, . . . ,aq). Thus we
know that

Aβ̂ − c = Nq(Aβ − c, σ2A(X′X)−1A′)

Thus we know that

(Aβ̂ − c− (Aβ − c))′(σ2A(X′X)−1A′)−1(Aβ̂ − c− (Aβ − c)) ∼ χ2
q

Simplifying, we have

(A(β̂ − β))′(A(X′X)−1A′)−1(A(β̂ − β))

σ2
∼ χ2

q

If σ2 is known, then {β|(A(β̂ − β))′(A(X′X)−1A′)−1(A(β̂ − β)) ≤ χ2
q,ασ

2} is a 100(1 − α)%

confidence interval for β. If σ2 is not known, then we have that (n−p)σ̂2

σ2 ∼ χ2
n−p. Thus we have

F =
(A(β̂ − β))′(A(X′X)−1A′)−1(A(β̂ − β))/qσ2

(n− p)σ̂2/(σ2(n− p))
∼ Fq,n−p
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4.4 Simultaneous Confidence Intervals and Regions

Simplifying, we get

F =
(A(β̂ − β))′(A(X′X)−1A′)−1(A(β̂ − β))

qσ̂2
∼ Fq,n−p

Thus we have that β|A(β̂ − β))′(A(X′X)−1A′)−1(A(β̂ − β))qσ̂2 ≤ Fq,n−p,α is a 100(1 − α)%
confidence interval for β.

Suppose we wish to make inference on h′φ where φ = Aβ. Likewise, we have

(φ̂− φ)′(A(X′X)−1A′)−1(φ̂− φ)

qS2
∼ Fq,n−p,α

Let L = A(X′X)A′. Thus we have

1− α = P
(

(φ̂− φ)′(A(X′X)−1A′)−1(φ̂− φ) ≤ qS2Fq,n−p,α

)
= P

(
b′L−1b ≤ qS2Fq,n−p,α

)
= P

(
max

h

(h′b)2

h′Lh
≤ qS2Fq,n−p,α h 6= 0

)

= P

(
(h′b)2

h′Lh
≤ qS2Fq,n−p,α ∀ h 6= 0

)

= P
(

(h′(φ̂− φ))2 ≤ h′(A(X′X)−1A′)hqS2Fq,n−p,α ∀ h 6= 0
)

= P

(
h′φ ∈ h′φ̂±

√
h′(A(X′X)−1A′)hqS2Fq,n−p,α ∀ h 6= 0

)
Thu we arrive at our confidence intervals derived by using Scheffe’s Method

= P

(
h′Aβ ∈ h′Aβ̂ ±

√
h′(A(X′X)−1A′)hqS2Fq,n−p,α ∀ h 6= 0

)

4.4.3 Studentized Range Distribution and Tukey’s Method

Definition 39 Let z1, . . . , zk and u be independent random variables with zi ∼ N (0, 1) and
u ∼ χ2

m(0). Then

q = max
1≤i 6=j≤k

|zi − zj |√
u/m

is said to have a Studentized Range Distribution with k and m degrees of freedom (denoted
qk,m).

Lemma 26 Let y1, . . . , yk and S2 be independent random variables with yi ∼ N (µ, aσ2) and
mS2

σ2 ∼ χ2
m(0). Then we have that

max
1≤i 6=j≤k

|yi − yj |√
aS

∼ qk,m
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4 Hypothesis Testing and Inference

Proof: We know that yi−µ√
aσ
∼ N (0, 1). We also know that mS2

σ2 ∼ χ2
m(0). Thus we know that

max
1≤i 6=j≤k

|yi−µ√
aσ
− yj−µ√

aσ
|√

mS2

σ2 /m
∼ qk,m

by definition. Since a > 0, we have

= max
1≤i 6=j≤k

|yi − yj |√
aσ

2S2

σ2

= max
1≤i 6=j≤k

|yi − yj |√
aS

∼ qk,m

�
Suppose we have a one-way ANOVA model. Thus we have:

yij ∼ N (µ+ αi, σ
2);

∑
αi = 0, i = 1, . . . , k j = 1, . . . , n

Ȳi. =
1

n

n∑
i=1

yij , σ̂2 =
1

k(n− 1)

k∑
i=1

n∑
j=1

(yij − ȳi.)2

Notice that ȳi.−αi√
σ2/n

∼ N (0, 1) and (k(n−1))σ̂2

σ2 ∼ χ2
k(n−1). Thus by the lemma, we have

max
1≤i 6=j≤k

|ȳi. − ȳj. − (αi − αj)|√
1
n σ̂

2
= max

1≤i 6=j≤k

√
n|ȳi. − ȳj. − (αi − αj)|

σ̂
∼ qk,k(n−1)

Thus we have that

1− α = P

(
max

1≤i 6=j≤k

√
n|ȳi. − ȳj. − (αi − αj)| ≤ σ̂qk,k(n−1),α

)

= P

(
|ȳi. − ȳj. − (αi − αj)| ≤

σ̂√
n
qk,k(n−1),α ∀ i 6= j

)
= P

(
αi − αj ∈ ȳi. − ȳj. ±

σ̂√
n
qk,k(n−1),α ∀ i 6= j

)
Thus a 100(1− α)% simultaneous confidence interval for all pairwise comparisons is

ȳi. − ȳj. ±
σ̂√
n
qk,k(n−1),α i 6= j

Lemma 27 Let α1, . . . , αk ∈ R. Then we have

|αi − αj | ≤ b ∀ i, j ⇐⇒ |
k∑
i=1

ciai| ≤ b
k∑
i=1

|ci|
2

for all ci’s such that
∑k

i=1 ci = 0.

Thus we can use this lemma to get a confidence interval for all contrasts in the means.

1− α = P

(
|ȳi. − ȳj. − (αi − αj)| ≤

σ̂√
n
qk,k(n−1),α ∀ i 6= j

)

⇐⇒ P

(
|
k∑
i=1

ci(ȳi. − αi)| ≤
σ̂√
n
qk,k(n−1),α

k∑
i=1

|ci|
2
∀ci s.t.

∑
ci = 0

)
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4.5 Fieller’s Theorem

= P

(
k∑
i=1

ciαi ∈
k∑
i=1

ciȳi. ±
σ̂√
n
qk,k(n−1),α

k∑
i=1

|ci|
2
∀ci s.t.

∑
ci = 0

)
Thus we have that a 100(1 − α)% simultaneous confidence interval for all

∑k
i=1 ciα such that∑k

i=1 ci = 0 is
k∑
i=1

ciȳi. ±
σ̂√
n
qk,k(n−1),α

k∑
i=1

|ci|
2

4.5 Fieller’s Theorem

Theorem 27 (Fieller’s Theorem) Let U and V be two normally distributed random vari-
ables, with means µU and µV , and variances ν11σ

2 and ν22σ
2 and covariance ν12σ

2. Then a
100(1− α)% confidence interval for µU

µV
is

1

(1− g)

U
V
− gν12

ν22
±
σ̂tm,α/2

V

√
−2

U

V
ν12 +

gν2
12

ν22
+
ν22U2

V 2
+ (1− g)ν11


where g =

t2m,ασ̂
2ν222

V 2 . Note that m is the degree of freedom of σ̂2.

Proof: Let W = U − θV = U − µU
µV
∼ N (0, σ2ν11 + σ2θ2ν22 − 2θσ2ν12). Thus we have that

W√
σ̂2(ν11 + θ2ν22 − 2θν12)

∼ tm

Thus we have that

1− α = P

(
W 2

σ̂2(ν11 + θ2ν22 − 2θν12)
≥ t2m,α/2

)
= P

(
(U − θV )2 − t2m,α/2σ̂

2(ν11 + θ2ν22 − 2θν12) ≥ 0
)

Let ψ(θ) = (U − θV )2 − t2m,α/2σ̂
2(ν11 + θ2ν22 − 2θν12). Thus we have

ψ(θ) = (U2 − t2m,α/2σ̂
2ν11)− θ(2UV − 2t2m,α/2σ̂

2ν12) + θ2(V 2 − t2m,α/2σ̂
2ν22)

If ψ(θ) = 0, then we have

θ =
2UV − 2t2m,α/2σ̂

2ν12 ±
√

(2UV − 2t2m,α/2σ̂
2ν12)2 − 4(V 2 − t2m,α/2σ̂2ν22)(U2 − t2m,α/2σ̂2ν11)

2(V 2 − t2m,α/2σ̂2ν22)

=
UV − t2m,α/2σ̂

2ν12 ±
√
−8UV t2m,α/2σ̂

2ν12 + 4(t2m,α/2σ̂
2ν12) + 4t2m,α/2σ̂

2(U2ν22 + V 2ν11)− 4(t2m,α/2σ̂
2)2ν11ν22

(V 2 − t2m,α/2σ̂2ν22)

Letting g =
t2m,ασ̂

2ν222
V 2 , we have

=
UV − gV 2 ν12

ν22
± σ̂tm,α/2V

√
−2UV ν12 +

t2
m,α/2

σ̂2ν212
V 2 + U2

V 2 ν22 + ν11 −
t2
m,α/2

σ̂2ν11ν22

V 2

(1− g)V 2

=
U − gV ν12

ν22
± σ̂tm,α/2

√
−2UV ν12 +

gν212
ν22

+ U2

V 2 ν22 + (1− g)ν11

(1− g)
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4 Hypothesis Testing and Inference

=
1

(1− g)

U
V
− gν12

ν22
±
σ̂tm,α/2

V

√
−2

U

V
ν12 +

gν2
12

ν22
+
U2

V 2
ν22 + (1− g)ν11


Thus a 100(1− α)% confidence interval for µU

µV
is

1

(1− g)

U
V
− gν12

ν22
±
σ̂tm,α/2

V

√
−2

U

V
ν12 +

gν2
12

ν22
+
U2

V 2
ν22 + (1− g)ν11


�

We will now show an application of Fieller’s Theorem. Consider the model

E(y) = β0 + β1(xi − X̄)

Thus we know that

X′X =

[
n 0
0
∑n

i=1(xi − x̄)2

]
and

X′y =

[ ∑n
i=1 yi∑n

i=1(xi − x̄)yi

]
Thus we have [

β̂0

β̂1

]
=

[
ȳ∑n

i=1(xi−x̄)yi∑n
i=1(xi−x̄)2

]
Suppose we observe y, but not x that gave the value of y. Suppose we want to construct a
100(1− α)% confidence interval for x (this problem is called the inverse calibration problem).

Thus we have the following

y = ȳ +

∑n
i=1(xi − x̄)yi∑n
i=1(xi − x̄)2

(x− x̄)

=⇒ x = x̄+
y − ȳ∑n

i=1(xi−x̄)yi∑n
i=1(xi−x̄)2

Thus we can get a confidence interval for x− x̄. Let U = y− ȳ and V =
∑n
i=1(xi−x̄)yi∑n
i=1(xi−x̄)2

. We have

var(U) = σ2 + σ2

n and var(V ) = σ2∑n
i=1(xi−x̄)2

. Thus we have that ν12 = 0, ν11 = 1 + 1/n, and

ν22 = 1∑n
i=1(xi−x̄)2

. Thus we can directly apply Fieller’s Theorem and get a confidence interval

for x.

4.6 Case Deletion Diagnostics

Consider the following model

E(y) = Xβ; rank(X) = P

Thus we know that β̂ = (X′X)−1X′y. Let

hii = (X(X′X)−1X′)ii = eiX(X′X)−1(Xei)
′ = x′i(X

′X)−1xi

Definition 40 We call the elements hii the leverage.
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4.6 Case Deletion Diagnostics

Notice that ŷi = (Hy)i =
∑n

j=1 hijyj =
∑

j 6=i hijyj + hiiyi. Thus we have that

∂ŷi
∂yi

= hii
∂ŷi
∂yj

= hij

Thus we can see that the leverage represents how changes in the ith outcome will effect the ith

prediction. Consider the ith residual. we know that ei = yi − ŷi. Thus we have

cov(e) = cov((I−H)y) = (I−H)σ2(I−H) = σ2(I−H)

Thus we have
var(ei) = σ2(1− hii)

Definition 41 We call the following quantity the Normalized Residuals:

ei√
σ2(1− hii)

∼ N (0, 1)

Definition 42 Let σ̂2 = y′(I−H)y
n−p . We call the following quantity the Internally Studentized Residuals:

ri =
ei√

σ̂2(1− hii)

Definition 43 Let σ̂2
(i) be the sample variance calculated without the ith observation. We call

the following quantity the Externally Studentized Residuals:

ti =
ei√

σ̂2
(i)(1− hii)

where σ̂2
(i) =

∑
j 6=i(yj − x′jβ̂(i)).

Lets take a look into the difference between β̂ and β̂(i). We will first note that

X′X =

n∑
i=1

xjx
′
j = xix

′
i +
∑
j 6=i

xjx
′
j = xix

′
i + X′(i)X(i)

X′y =
n∑
i=1

xiyi = xiyi +
∑
j 6=i

xjyj = xiyi + X(i)y(i)

Thus we have that
β̂(i) =

(
X′X− xix

′
i

)−1
(Xy − xiyi)

Using Sherman-Morrison, we have that (X′X− xix
′
i)
−1 = (X′X)−1 +

(X′X)−1xix
′
i(X
′X)−1

1−hii . Thus
we have

β̂(i) =

(
(X′X)−1 +

(X′X)−1xix
′
i(X

′X)−1

1− hii

)
(Xy − xiyi)

= (X′X)−1Xy +
(X′X)−1xix

′
i(X

′X)−1Xy

1− hii
− (X′X)−1xiyi −

(X′X)−1xix
′
i(X

′X)−1xiyi
1− hii

= β̂ +
(X′X)−1xi

1− hii
[
x′i(X

′X)−1X′y − (1− hii)yi − hiiyi
]

Thus we have that

β̂(i) = β̂ − (X′X)−1xiei
1− hii

61
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Lets take a look at how σ̂2 relates to σ̂2
(i). We know that

(n− p− 1)σ̂2
(i) =

∑
j 6=i

(
yj − x′j

(
β̂ − (X′X)−1xiei

1− hii

))2

=
∑
j 6=i

(
ej +

xj(X
′X)−1xiei

1− hii

)2

=
∑
j 6=i

(
ej +

hjiei
1− hii

)2

=

n∑
j=1

(
ej +

hjiei
1− hii

)2

−
(
ei −

hiiei
1− hii

)
Since we know that ei − hiiei

1−hii = ei
1−hii , we have that

(n− p− 1)σ̂2
(i) =

n∑
j=1

e2
j + 2

ejhjiei
1− hii

+
h2
jie

2
i

(1− hii)2
− ei

1− hii

Notice that

0 = H(I−H)y = He =⇒
n∑
j=1

hijej =

n∑
j=1

ejhji = 0

We also have that ∑
j

hijhji = (H2)ii = (H)ii = hii =⇒
∑
j

h2
ij = hii

Thus we have

(n− p− 1)σ̂2
(i) =

n∑
j=1

e2
j +

hiie
2
i

(1− hii)2
− ei

1− hii

=

n∑
j=1

(e2
j ) +

e2
i

(1− hii)2
[hii − 1]

(n− p− 1)σ̂2
(i) = (n− p)σ̂2 − e2

i

1− hii
Using this identity between σ̂2

(i) and σ̂2, we can derive a relationship between t2i and r2
i .

t2i =
e2
i

σ̂(i)(1− hii)
=

e2
i (n− p− 1)

(1− hii)
[
(n− p)σ̂2 − e2i

1−hii

]
=

e2
i (n− p− 1)

σ̂2(1− hii)
[
n− p− e2i

σ̂2(1−hii)

] =
r2
i (n− p− 1)

n− p− r2
i

4.7 Leave-One-Out Case Diagnostics

Leave-One-Out case diagnostics deals with answering how the ith case affects the volume of the
confidence ellipsoid.

Definition 44 Cook’s Distance is defined as

Ci =
(β̂ − β̂(i))

′X′X(β̂ − β̂(i))

pσ̂2
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4.8 Lack of Fit

We can show that Ci =
hiir

2
i

p(1−hii) .

Definition 45 DFITS is defined as

wki =
|xi(β̂ − β̂(i))|

σ̂(i)hii

It also goes by the Welsch-Kul distance measure.

Definition 46 The Andrew-Pregibon test statistic is defined as

APi =
(n− p− 1)σ̂2

(i)|X
′
(i)X(i)|

(n− p)σ̂2|X′X|

We can interpret the Andrew-Pregibon confidence interval as the ratio of the areas of the
confidence intervals.

We know that β̂j =
〈y,x⊥j 〉
||x⊥j ||2

. Thus we can see that var(β̂j) = σ2

||x⊥j ||2
. We will show that

var(β̂j) = σ2

(n−1) ˆvar(xj)[1−R2
j ]

where R2
j =

SSReg of xj on xi, i 6=j∑n
i=1(xji−x̄j.)2 . Notice that

R2
j =

x′j

(
PX(j)

− 11′

n

)
xj

x′j
(
I− 11′

n

)
xj

Thus we have

1−R2
j =

x′j

(
I−PX(j)

)
xj

x′j
(
I− 11′

n

)
xj

=
||x⊥j ||

x′j
(
I− 11′

n

)
xj

Since we have that (n− 1) ˆvar(xj) = x′j

(
I− 11′

n

)
xj , we have

var(β̂j) =
σ2

(n− 1) ˆvar(xj)[1−R2
j ]

=
σ2

(n− 1) ˆvar(xj)

1

1−R2
j

Definition 47 We define the Variance Inflation Factor as

1

1−R2
j

4.8 Lack of Fit

Suppose we have the following hypothesis to test

H0 : E(y) = Xβ = η

What happens if the model is misspecified in one of the following ways?

1. var(ei) are correlated

2. mean function is misspecified

3. error distribution is misspecified
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4 Hypothesis Testing and Inference

For 1 and 3, we would look at residual plots and q-q plots. However, lets take a closer look at
2.
Suppose E(y) = γ 6= η. Assuming γ is known, let γ0 = PXγ. We will define the model residual
vector as γ − γ0 = (I−PX)γ. Define

Λ2 = γ(I−PX)γ = γ ′γ − γ0γ0 = (γ − γ0)′(γ − γ0)

Now, we can see that
e = y − η̂ = y −PXy

E(e) = (I−PX)E(y) = γ − γ0

= E(e′e) = E(y′(I−PX)y) = γ ′(I−PX)γ + σ2(n− p)

Thus we can see that the E(MSE) = σ2 + Λ
n−p . We can also see that the expected regression

sum of squares is
E(η̂′η̂) = E(y′PXy) = γ ′0γ0 + σ2p

From this we can see that the total sum of squares will be

Λ + σ2(n− p) + σ2(p) + γ ′0γ0 = γ ′γ + σ2n

Thus we can make an ANOVA table to summarize the results above:

source SS df E(MS)

Regression η̂′η̂ p
γ′0γ0

p + σ2

Error e′e n− p σ2 + Λ
n−p

Total y′y n γ′γ
n + σ2

In order for us to derive a lack of fit test, the design matrix, X, needs to have some structure/
requirements. We will need enough replications at different locations of the design space. Fro
example, let there be g unique points in our design matrix. Let each point have ni observations.
Thus we have ni observations at x′i = [xi1, xi2, . . . , xip]. Therefore our design and response
matrix should take the following form

y =



y11
...

yn11

y21
...

yngg


X =



x′1
...

x′1
x′2
...

x′n


In order for us to test whether the mean function is misspecified, we must have that g > p.
Now we can partition the sum of squared error into the following two parts.

e′e =

g∑
r=1

nr∑
t=1

(ytr − ŷtr)2 =

g∑
r=1

nr∑
t=1

(ytr − ȳ.r + ȳ.r − ŷtr)2

=

g∑
r=1

nr∑
t=1

(ytr − ȳ.r)2 +

g∑
r=1

nr∑
t=1

(ȳ.r − xrβ̂)2

Notice that
∑nr

t=1

(ytr−ȳtr
σ

)2 ∼ χ2
nr−1(0). Thus we have

E

[
g∑
r=1

nr∑
t=1

(ytr − ȳ.r)2

]
= E

[
g∑
r=1

nr∑
t=1

(
ytr − ȳtr
σ2

)2

σ2

]
= (n− g)σ2
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4.8 Lack of Fit

where n =
∑g

i=1 ni. Since we know that E(e′e) = (n− p)σ2 + Λ, we know that

E(

g∑
r=1

nr∑
t=1

(ȳ.r − xrβ̂)2) = E(e′e)− E(

g∑
r=1

nr∑
t=1

(ytr − ȳ.r)2) = (g − p)σ2 + Λ

Thus we can summarize these results using an updated ANOVA table

source SS df E(MS)

Regression η̂′η̂ p
γ′0γ0

p + σ2

SSPE
∑g

r=1

∑nr
t=1(ytr − ȳ.r)2 g − p σ2

SSLOF
∑g

r=1

∑nr
t=1(ȳ.r − xrβ̂)2 n− g σ2 + Λ

n−g
Total y′y n γ′γ

n + σ2

(SSPE stands for sum of squares - pure error, and SSLOF stands for sum of squares - lack of
fit). Consider the following matrix

U =


In1 − 11′

n1
0 . . . 0

0 In2 − 11′

n2
. . . 0

...
...

. . .
...

0 0 . . . Ing − 11′

ng


Thus we can write SSPE = y′Uy. Since SSE = y′(I − PX)y, we know that SSLOF =
y′(I−PX −U)y. Since UX = 0 and (I−PX)X = 0,under H0, we have

SSPE = y′Uy = (y −Xβ)′U(y −Xβ) ∼ χ2
n−g(0)

SSLOF = y′(I−PX −U)y = (y −Xβ)′(I−PX −U)(y −Xβ) ∼ χ2
g−p(0)

Thus we can use the following F-test to test the following null hypothesis:

H0 : E(y) = Xβ = η

F ∗ =
SSLOF/(g − p)
SSPE/(n− g)

∼ Fg−p,n−g
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5 Optimal Design

5.1 Introduction

Consider the following linear regression model

y = Xβ + ε, ε ∼ N (0, σ2I)

Optimal design deals with answering the following question: Given a fixed ample size N , how
do we select N points from the design interval X to observe the response y in some optimal
way. In many linear regression settings, this comes down to minimizing the variance of your
estimates in some way. Consider the following example.

Consider the simple linear regression model on the interval X = [a, b]. What is the best design
for estimating both the slope and intercept?

Since we want to minimize the variance of the slope and intercept, we will look at minimizing
the confidence ellipse for β0 and β1. We know that the ellipsoid will take the form

(β̂ − β)′(X′X)−1(β̂ − β) ≤ ψ(α)

Thus we can minimize the axes of the ellipsoid λ1 and λ2 (where λ1 and λ2 are the eigenvalues
of (X′X)−1). One way to minimize this is to minimize det((X′X)−1) since we know that the
determinant is the product of the eigenvalues. In this case, we can see that

X′X =

[
n

∑n
i=1 xi∑n

i=1 xi
∑n

i=1 x
2
i

]
Thus we can see that

det((X′X)−1) =
1

n
∑n

i=1 x
2
i − (

∑n
i=1 xi)

2

WLOG, we can assume x ∈ [−1, 1] since ∃ g : [a, b]→ [−1, 1] that is an isomorphic transforma-
tion. It is easy to see that

det((X′X)−1) =
1

n
∑n

i=1 x
2
i − (

∑n
i=1 xi)

2 ≥
1

n

Notice that this happens when n/2 of them are −1 and n/2 of them are 1. Therefore, the best
design for estimating both the slope and intercept is to take equal observations at both ends of
the interval.

What if we are only interested in estimating the intercept? This means that we want to minimize
the variance of β̂0. We know that

var(β̂0) = σ2(X′X)−1
11

= σ2

∑n
i=1 x

2
i

n
∑n

i=1 x
2
i − (

∑n
i=1 xi)

2 = σ2 1

n− (
∑n
i=1 xi)

2∑n
i=1 x

2
i

≥ σ2

n
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5 Optimal Design

Thus we can see that the variance is minimized whenever
∑n

i=1 xi = 0. Thus any symmetric
design around 0 is optimal for estimating the intercept only.

What if the goal is to estimate the mean response given at a point x0 inside [a, b]? Thus we
want to minimize the variance of ŷ(x0). We know that

ŷ(x0) =
[
1 x0

]
(X′X)−1X′y = x0(X′X)−1X′y

Thus we have

var(ŷ(x0)) = σ2x0(X′X)−1X′X(X′X)−1x′0 = σ2x0(X′X)−1x′0

=
1

n
∑n

i=1 x
2
i − (

∑n
i=1 xi)

2

[
1 x0

] [ ∑n
i=1 x

2
i −

∑n
i=1 xi

−
∑n

i=1 xi n

] [
1
x0

]
=

1

n
∑n

i=1 x
2
i − (

∑n
i=1 xi)

2

n∑
i=1

x2
i − 2x0

n∑
i=1

xi + x2
0n =

∑n
i=1(xi − x0)2

n
∑n

i=1 x
2
i − (

∑n
i=1 xi)

2

=

∑n
i=1(xi − x0)2

n
∑n

i=1(xi − x̄)2
=

∑n
i=1 ((xi − x̄) + (x̄− x0))2

n
∑n

i=1(xi − x̄)2
=

∑n
i=1(xi − x̄)2 + n(x̄− x0)2

n
∑n

i=1(xi − x̄)2

=
1

n
+

(x̄− x0)2∑n
i=1(xi − x̄)2

≥ 1

n

We can see that they are equal when x̄ = x0. Thus any design around x0 is optimal.

What if we are interested in estimating the mean response given at a point x0 outside of [a, b]?
We have the following expression for the variance of ŷ(x0):

var(ŷ(x0)) =
1

n
+

(x̄− x0)2∑n
i=1(xi − x̄)2

Note that

minXvar(ŷ(x0)) =⇒ minX
(x̄− x0)2∑n
i=1(xi − x̄)2

WLOG, we can again assume that X ∈ [−1, 1]. Thus we know that −1 ≤ x̄ ≤ 1. By putting
all observations at the endpoints of the design window, we can achieve any x̄ by adjusting the
proportion of observations at each end point. Notice that we can also maximize the variance
(denominator) by putting all observations on the end of the design window. Thus let δ be the
proportion of the observations put on 1 and (1 − δ) be the proportion on observations put on
−1. Thus we can see that x̄ = 2δ − 1. Thus we have

(x̄− x0)2∑n
i=1(xi − x̄)2

=
(2δ − 1− x0)2

δn(2− 2δ)2 + (1− δ)n(2δ)2
=

(2δ − 1− x0)2

δn(4− 8δ − 4δ2) + (1− δ)n4δ2

=
(2δ − 1− x0)2

4n(δ − δ2)

∂

∂δ
=

4n(δ − δ2)4(2δ − 1− x0)− (2δ − 1− x0)24n(1− 2δ)

16n2(δ − δ2)2

=
4n(2δ − 1− x0)

(
4(δ − δ2)− (2δ − 1− x0)(1− 2δ)

)
16n2(δ − δ2)2

We can see that the derivative equals zero when 4(δ− δ2)− (2δ− 1− x0)(1− 2δ) = 0. Thus we
have

4(δ − δ2)− (2δ − 1− x0)(1− 2δ) = −2x0δ + 1 + x0 = 0

Thus we have that

δ̂ =
1 + x0

2x0

for all x0 ∈ R.
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5.2 Optimal Design Theory

5.2 Optimal Design Theory

Definition 48 An Exact Optimal Design tells you exactly how many doses you need, where
these dose levels are, and how many subjects to assign to each of these doses in some optimal
way.

Definition 49 An Approximate Optimal Design tells you how many doses you need, where
these dose levels are, and roughly how many subjects to assign to each of these doses in some
optimal way.

We will mostly deal with Approximate Optimal Designs in this section. When considering an
Approximate Optimal Design problem, we usually ask the following questions:

1. How many points are needed to optimize the criterion? (call this number k)

2. Where are the optimal design points? (x1, . . . , xk ∈ [a, b])

3. What is the optimal proportion of the total observations to take at each of these points?
(w1, . . . , wk)

We will denote a generic approximate design by ξ:

ξ =

[
x1 x2 . . . xk
w1 w2 . . . wk

]
where 0 ≤ wi ≤ 1 for i = 1, . . . , k and

∑k
i=1wi = 1. For fixed N , the implemented design, ξ ,

assigns approximately Nwi subjects to xi for i = 1, . . . , k.

Consider the following model
y(x) = f ′(x)β + ε(x)

where ε(x) ∼ N (0, σ2/λ(x)) where λ(x) is some known positive function. We will also assume
that f ′(x) ∈ Rd. It can be shown that the Fisher information matrix for a k-point approximate
design ξ is proportional to

M(ξ) =
k∑
i=1

λ(xi)wif(xi)f
′(xi)

when k ≥ d. We know from previous classes that

cov(β̂) ∝M−1(ξ)

For a nonlinear model, we have E(y) = f(x,β). Thus we can replace f(x) in the above formula
with the gradient of f(x,β) with respect to β. Now that we have found a formula for the
covariance of our regression parameters, what does it mean to minimize the covariance?

Definition 50 We say that ξ achieves D-Optimality if ξ minimizes |M−1(ξ)|, or equivalently
ln|M−1(ξ)|.

Definition 51 We say that ξ achieves A-Optimality if ξ minimizes tr(M−1(ξ)).

Definition 52 We say that ξ achieves I-Optimality if ξ minimizes the variance over a re-
sponse region (X). Thus we have

min
ξ

tr
(
RM−1(ξ)

)∫
X dx

where R =
∫
X f(x)f ′(x)dx.
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5 Optimal Design

Our goal in optimal design is to find ξ such that it is optimal among all possible ξ. We can use
the following theorem to help check/ prove that some design is D-Optimal.

Theorem 28 (Equivalence Theorem for D-Optimality) ξ∗ is D-Optimal if and only if
λ(x)f ′(x)M−1(ξ)f(x)− d ≤ 0 for all x ∈ X, with equality at the design points. In this case, d
is the dimension of f(x).

When dealing with these problems in real life, sometimes the optimal design is not actually
desired. This could be due to some uncertainty in your assumptions, or perhaps due to other
reasons. In this case, it may be useful to characterize how much worse this model is compared
to the optimal model. We call this the Design Efficiency.

Definition 53 We define the following quantity as A-efficiency:

A-eff(ξ) =
tr (M(ξ))

tr (M(ξ∗)))

where ξ∗ is the optimal design.

We can interpret this as sum of the variances of the parameters under the design ξ, divided by
the sum of the variances of the parameters under the optimal design, ξ∗.

Definition 54 We define the following quantity as D-efficiency:

D-eff(ξ) =

(
|M(ξ)|
|M(ξ∗)|

)1/p

where ξ∗ is the optimal design.

We can interpret this as some ratio of the area of the confidence ellipsoid of the parameters
under the design ξ, divided by the area of the confidence ellipsoid of the parameters under the
optimal design, ξ∗.

Thus if ξ has an efficiency of 0.5, ξ needs to be replicated twice in order to do as well as ξ∗.
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6 Shrinkage Estimators

6.1 Ridge Regression

Ridge regression can be used as a means for improving the estimation of regression coefficients
when the predictors are highly correlated. We can also prove that the prediction accuracy with
the ridge estimate. The ridge estimate solves the following problem

min
β̂R

||y −Xβ̂R||2 + k||β̂R||22 k ≥ 0

We can show that the solution to this minimization problem will have the following form

β̂R = (X′X + kI)−1X′y

Using the spectral decomposition of X′X (X′X = TDT′), we have

β̂R = (X′X + kI)−1X′X(X′X)−1X′y

= (X′X + kI)−1X′Xβ̂

= (T(D + kI)T′)−1TDT′β̂

= T(D + kI)−1T′TDT′β̂

= T(D + kI)−1T′TDT′β̂

= T(D + kI)−1DT′β̂

=

p∑
i=1

ti
dit
′
iβ̂

di + k

We can now look for the covariance of β̂R.

cov(β̂R) = σ2(X′X + kI)−1X′X(X′X + kI)−1

= σ2T(D + kI)−1T′TDT′T(D + kI)−1T′

= σ2T(D + kI)−1D(D + kI)−1T′

= σ2
p∑
i=1

di
(di + λ)2

t′iti

Now lets take a look at E(β̂R)− β.

E(β̂R)− β = T(D + kI)−1DT′β − β

=

p∑
i=1

(
di

di + k
− 1

)
tit
′
iβ

= −
p∑
i=1

(
k

di + k

)
tit
′
iβ

We can define the Mean Squared Error of β̂R as MSE = (bias)(bias)′ + Cov. Thus we have
that

MSE(β̂R) = T((D+kI)−1D+I)T′ββ′T((D+kI)−1D+I)T′+σ2T(D+kI)−1D(D+kI)−1T′

Thus we can use the following to compare β̂ to β̂R using any one of the following metrics:
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6 Shrinkage Estimators

1. tr(Cov(β̂R))− tr(Cov(β̂))

2. tr(MSE(β̂R))− tr(MSE(β̂))

3. ||Xβ̂R −Xβ̂||22

6.2 Stein Estimation

Suppose that we have that
y ∼ Nn(Xβ = µ, σ2I)

Thus we have that µ̂ = PXy, σ̂2 = y′(I−PX)y, and rank(X) = p. We know that

||µ̂||2 = ||PXy||2 = y′PXy

We have that
E(||µ̂||2) = µ′µ + σ2tr(PX) = ||µ||2 + pσ2 > ||µ||2

This suggests that at least some elements of the estimate are too large. Thus consider shrinking
the estimate in the following from µ̃ = cµ̂, where 0 < c < 1. It is apparent that this will be
biased, but is it possible to choose a c such that µ̃ has a smaller standardized square error loss?

L(µ̃, (µ, σ2)) =
||µ̃− µ||2

σ2

We can define the risk as the averaging of the standardized square error loss.

R(µ̃, (µ, σ2)) =
E||µ̃− µ||2

σ2

We can see that

R(µ̂, (µ, σ2)) =
Eµ̂′µ̂− 2µ̂′µ + µ′µ

σ2
=

µ′µ + pσ2 − 2µ′µ + µ′µ

σ2
= p

Lets take a look at the risk function of the proposed estimator

R(µ̃, (µ, σ2)) =
Eµ̃′µ̃− 2µ̃′µ + µ′µ

σ2
=
c2µ′µ + c2pσ2 − 2cµ′µ + µ′µ

σ2
=
c2pσ2 + (1− c)2||µ||2

σ2

Lets minimize the above risk to try and find what c should be

∂

∂c

(
c2pσ2 + (1− c)2||µ||2

)
= 2cpσ2 − 2(1− c)||µ||2 = 0

Thus we have that the optimal is

c∗ =
||µ||2

||µ||2 + pσ2
= 1− pσ2

||µ||2 + pσ2

However, we do not know ||µ||2 since we do not know µ. Thus we can consider estimators of
the following form

µ̃ =

(
1− cσ̂2

||µ̂||2

)
µ̂

Lemma 28 1. If X ∼ χ2
n, E(X−1) = 1

n−2 , n > 2.

2. If u ∼ Np(θ, I) and k ∼ Poisson(||θ||2/2), then

a) E
(

1
||u||2

)
= E

(
1

p−2+2k

)
b) E

(
u′(u−θ)
||u||2

)
= E

(
p−2

p−2+2k

)
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6.2 Stein Estimation

Proof:

1. We know that

E(X−1) =

∫ ∞
0

1

2n/2Γ(n/2)
xn/2−2e−x/2dx

Since we have that Γ(x+ 1) = xΓ(x), we have

=
1

2(n− 2)

∫ ∞
0

2

2n−2/2Γ(n− 2/2)
xn−2/2−1e−x/2dx

Since what is inside the integrand is the pdf of a chi-squared distribution with n − 2
degrees of freedom, we know that it integrates to 1. Thus we have

E(X−1) =
1

n− 2

for n > 2.

2. a) We will start with the fact that if V |k ∼ χ2
p+2k(0), then V ∼ χ2

p(||θ||2). By definition

of a non-central χ2, we know that ||µ||2 = µ′µ ∼ χ2
p(||θ||2). Thus we have

E
(

1

||µ||2

)
= E

(
E

1

||µ||2
|k
)

= E
(

1

p+ 2k − 2

)
by part 1.

b) Let u′ = (u1, . . . , up) and θ′ = (θ1, . . . , θp). Thus we have

E
(

1

||µ||2

)
=

∫
1

µ′µ
e−(1/2)(µ−θ)′(µ−θ)dµ

∂

∂θi
E
(

1

||µ||2

)
=

∫
1

µ′µ

∂

∂θi
e−(1/2)(µ−θ)′(µ−θ)dµ

=

∫
µi − θi
µ′µ

e−(1/2)(µ−θ)′(µ−θ)dµ

Thus we have that

(∗) ∂

∂θi
E
(

1

||µ||2

)
= E

(
µi − θi
||µ||2

)
From part (a), we know that E

(
1
||µ||2

)
= E

(
1

p+2k−2

)
, thus we can look at the

following

∂

∂θi
E
(

1

p+ 2k − 2

)
=

∂

∂θi

∞∑
i=1

e||θ||
2/2

(p+ 2k − 2)k!

||θ||2k

2k

=

∞∑
i=1

θi(2k − ||θ||2)e||θ||
2/2

||θ||2(p+ 2k − 2)k!

2||θ||2k

2k

(∗∗) ∂

∂θi
E
(

1

p+ 2k − 2

)
=

θi
||θ||2

E
(

2k − ||θ||2

p+ 2k − 2

)
k ∼ Poisson(||θ||2/2)

Thus from (∗) and (∗∗), we have that

E
(
µ− θ

||µ||2

)
=

θ

||θ||2
E
(

2k − ||θ||2

p+ 2k − 2

)
Thus we have

E
(
µ′(µ− θ)

||µ||2

)
= E

(
µ′µ− θ′θ − θ′(µ− θ)

||µ||2

)
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6 Shrinkage Estimators

= 1− ||θ||2E
(

1

||µ||2

)
− θ′E

(
µ− θ

||µ||2

)
= 1− ||θ||2E

(
1

p+ 2k − 2

)
− θ′θ

||θ||2
E
(

2k − ||θ||2

p+ 2k − 2

)
= 1− E

(
2k

p+ 2k − 2

)
= E

(
p− 2

p+ 2k − 2

)
Thus we have that

E
(
µ′(µ− θ)

||µ||2

)
= E

(
p− 2

p+ 2k − 2

)
�

Using this lemma above, we show that if µ̃ =
(

1− cσ̂2

||µ̂||2

)
µ̂, then R(µ̃, (µ, σ2)) = p − [2c(p −

2)− c2 n−p+2
n−p ]E

(
1

p+2k−2

)
, where k ∼ Poisson(||µ||2/2σ2).

We know that

R(µ̃, (µ, σ2)) = E
(
||µ̃− µ||2

σ2

)
= E

 ||µ̂− µ− c σ̂2

||µ̂||2 µ̂||
2

σ2


=

E||µ̂− µ||2

σ2
− 2c

σ2
E(σ̂2)E

(
(µ̂− µ)′µ̂

||µ̂||2

)
+
c2

σ2
E(σ̂4)E

(
1

||µ̂||2

)
We know the following:

1. E||µ̂−µ||2
σ2 = p

2. (n−p)σ̂2

σ2 ∼ χ2
n−p(0)

3. Eσ̂2 = σ2

4. Eσ̂4 = var(σ̂2) + (Eσ̂2)2 = 2(n−p)σ4

(n−p)2 + σ4 = (n−p+2)σ4

(n−p)

Let Z be an orthonormal basis for C(X). Let u = Z′y
σ and θ = Z′µ

σ . Then we know that
u ∼ N (θ, I). Since µ ∈ C(X), we know that

µ = PXµ = Z(Z′Z)−1Z′µ = ZZ′µ = σZθ

µ̂ = PXy = Z(Z′Z)−1Z′y = ZZ′y = σZu

Thus we have that
||µ||2

2σ2
=
||θ||2

2
,

1

||µ̂||2
=

1

σ2||u||2

and that
(µ̂− µ)′µ̂

||µ̂||2
=

(u− θ)′u

||u||2

Therefore, we have

E
(

(µ̂− µ)′µ̂

||µ̂||2

)
= E

(
(u− θ)′u

||u||2

)
= E

(
p− 2

p+ 2k − 2

)
and

E
(

1

||µ̂||2

)
=

1

σ2
E
(

1

||u||2

)
=

1

σ2
E
(

1

p+ 2k − 2

)
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6.2 Stein Estimation

Thus we have that

R(µ̃, (µ, σ2)) = p−
[
2c(p− 2) +

c2(n− p+ 2)

n− p

]
E
(

1

p+ 2k − 2

)
If we minimize this with respect to c, will get that

c∗ =
(p− 2)(n− p)
n− p+ 2

It can be shown that this provides a smaller risk function that the least squares estimate for
all µ and σ2. Thus we can say that µ̃ is uniformly better than µ̂ in terms of the risk function.
Thus the James Stein estimator is the following

µ̃ =

(
1− cσ̂2

||µ̂||2

)
µ̂

where c = (p−2)(n−p)
n−p+2 .
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7 ANOVA and Linear Mixed Effects Models

7.1 One-way ANOVA

The typical model for a one-way ANOVA model is

yij = µ+ τi + εij i = 1, . . . , a, j = 1, . . . , n

where
∑a

i=1 τi = 0 and εij = N (0, σ2). Suppose we want to test the following

H0 : τ1 = τ2 = · · · = τa = 0

H1 : τi 6= τj 1 ≤ i 6= j ≤ a

First we will find the least squares estimate. We can see that we have to minimize the following
function:

a∑
i=1

n∑
j=1

(yij − µ− τi)2

We can show that the least squares estimate will lead to

µ̂ = ȳ.. τ̂i = ȳi. − ȳ.. i = 1, . . . , a

We know that SSTO =
∑a

i=1

∑n
j=1(yij − ȳ..)2. we can decompose this into SSE and SSTr in

the following way

a∑
i=1

n∑
j=1

(yij − ȳ..)2 =

a∑
i=1

n∑
j=1

(yij − ȳi. + ȳi. − ȳ..)2 =

a∑
i=1

n∑
j=1

(yij − ȳi.)2 +

a∑
i=1

n∑
j=1

(ȳi. − ȳ..)2

let yi. be the vector of responses for treatment group i. Thus we have

n∑
j=1

(yij − ȳi.)2 = y′i.
(I− 11′

n )

σ2
yi.σ

2

Since yi ∼ N (1(µ+ τi), σ
2I), we know that

∑n
j=1(yij − ȳi.)2 ∼ σ2χ2

n−1(0). Thus we have that

SSE =
a∑
i=1

n∑
j=1

(yij − ȳi.)2 ∼ σ2χ2
a(n−1)

We can also let

U =


11′

n 0 . . . 0

0 11′

n . . . 0
...

...
. . .

...

0 0 . . . 11′

n


Thus we have that, under H0,

SSE = y′(I−U)y = y′
(I−U)

σ2
yσ2 ∼ σ2χ2

g(n−1)(0)
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7 ANOVA and Linear Mixed Effects Models

Thus we know that SSTr = y′(U− 11′

n )y. Thus we have

SSTr = y′(U− 11′

N
)y = y′

(
(U− 11′

N )

σ2

)
yσ2 ∼ σ2χ2

a−1(0)

We can also find the expected value of SSTr. Thus we have

E(y′(U− 11′

N
)y) = µ′(U− 11′

N
)µ + tr((U − 11′

N
)Iσ2) = n

a∑
i=1

τ2
i + σ2(a− 1)

Thus we know the following facts

1. E(SSTr) = n
∑a

i=1 τ
2
i + σ2(a− 1)

2. Under H0, g(n−1)MSE
σ2 ∼ χ2

g(n−1)(0)

3. Under H0, (a−1)MSTr
σ2 ∼ χ2

a−1

Thus we can test H0 using the following F-test:

F ∗ =
((a− 1)MSTR)/(σ2(a− 1))

((a(n− 1))MSE)/(σ2(a(n− 1)))
=
MSTR

MSE
∼ Fa−1,a(n−1)

7.2 Mixed Effects ANOVA Model

Suppose we treat the difference in treatment effect as a random variable. Thus we would have
the following model:

yij = µ+ τi + εij ; εij ∼ N (0, σ2
ε ) τi ∼ N (0, σ2

τ ) εij ⊥⊥ τi

Suppose we want to test the following hypothesis

H0 : σ2
τ = 0, H1 : σ2

τ > 0

We can see that
ȳi. = µ+ τi + ε̄.i

ȳ = µ+ τ̄ + ε̄

Thus we can see that

SSE =
∑∑

(yij − ȳi)2 =
∑∑ (εij − ε̄i.)2

σ2
ε

σ2
ε

Therefore, we can see that SSE ∼ σ2
εχ

2
a(n−1). We can also see that we have

SSTr =
∑∑

(ȳi. − ȳ)2 =
∑∑

(τi − τ̄ + ε̄i. − ε̄)2

Under H0, we know that τi − τ̄ = 0. Thus we have that

SSTr =
∑∑

(ε̄i. − ε̄)2 = n
a∑
i=1

(ε̄i. − ε̄)2 =
a∑
i=1

(ε̄i. − ε̄)2

σ2/n
σ2

Since (ε̄i.−ε̄)2
σ2/n

∼ χ2
1(0), we have that SSTr ∼ χ2

a−1(0). Thus to test H0, we can use the following
test statistic:

F ∗ =
(a(n− 1))MSE/(σ2a(n− 1))

(a− 1)MSTr/(σ2(a− 1))
=

MSE

MSTr
∼ Fa(n−1),(a−1)
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7.2 Mixed Effects ANOVA Model

Now, how do we estimate σ2
τ? Lets look at the following

E(SSTr) = E

[
n

a∑
i=1

(τi − τ̄)2

σ2
τ

σ2
τ +

a∑
i=1

n(ε̄i. − ε̄)2

σ2
ε

σ2
ε

]
Since we know that

E

(
a∑
i=1

n(ε̄i. − ε̄)2

σ2
ε

σ2
ε

)
= (a− 1)σ2

ε

and

E

(
a∑
i=1

(τi − τ̄)2

σ2
τ

σ2
τ

)
= σ2

τ (a− 1)

Thus we know that
E(SSTr) = n(a− 1)σ2

τ (a− 1) + (a− 1)σ2
ε

Since E(MSTr) = E(SSTr)
a−1 , we have that

E(MSTr) = nσ2
τ + σ2

ε

Since E(MSE) = σ2
ε , we have that

σ̂2
τ =

MSTr −MSE

n

Can we derive a distribution for σ2
τ? Not really, but we can define a distribution on the quantity

known as the intraclass correlation

ρ =
σ2
τ

σ2
τ + σ2

ε

This quantity is important because it reflects the proportion of the variance of an observation
that is the result of differences between treatments. We can show that

F ∗ =
MSTr/(nσ2

τ + σ2
ε )

MSE/σ2
ε

∼ Fa−1,a(n−1)

Thus we have

1− α =

(
Fa−1,a(n−1),1−α/2 ≤

MSTr

MSE

σ2
ε

nσ2
τ + σ2

ε

≤ Fa−1,a(n−1),α/2

)
=

(
MSE

MSTr
Fa−1,a(n−1),1−α/2 ≤

σ2
ε

nσ2
τ + σ2

ε

≤ MSE

MSTr
Fa−1,a(n−1),α/2

)
=

(
MSTr

MSE

1

Fa−1,a(n−1),1−α/2
≤ nσ2

τ + σ2
ε

σ2
ε

≤ MSTr

MSE

1

Fa−1,a(n−1),α/2

)
=

(
MSTr

MSE

1

Fa−1,a(n−1),1−α/2
− 1 ≤ nσ2

τ

σ2
ε

≤ MSTr

MSE

1

Fa−1,a(n−1),α/2
− 1

)
=

(
1

n

(
MSTr

MSE

1

Fa−1,a(n−1),1−α/2
− 1

)
≤ σ2

τ

σ2
ε

≤ 1

n

(
MSTr

MSE

1

Fa−1,a(n−1),α/2
− 1

))
=

(
L ≤ σ2

τ

σ2
ε

≤ U
)

Notice that
σ2
τ/σ

2
ε

1 + σ2
τ/σ

2
ε

=
σ2
τ

σ2
ε + σ2

τ

Thus we have that

1− α =

(
L

1 + L
≤ σ2

τ

σ2
τ + σ2

ε

≤ U

1 + U

)
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7 ANOVA and Linear Mixed Effects Models

7.3 Rules for Expected Mean Squares

Suppose we have the following model:

yijk = µ+ τi + βj + (τβ)ij + εijk; i = 1, . . . , a; j = 1, . . . , b; k = 1, . . . n

in this model, we have that τi is a fixed effect, βj is a random effect, and (τβ)ij is also a random
effect. Thus, using the following rules, we can derive the expected sum of squares

1. The error term in the model, εij...m, is written as ε(ij... )m where m is the subscript that
denotes the replication.

2. For each term in the model, divide the subscripts into the following three classes:

a) live - subscripts that are present in the term and are not in parentheses

b) dead - subscripts that are present in the term and are in the parentheses

c) absent - those subscripts that are present in the model, but not in that particular
term

For example, in (τβ)ij , i and j are live and k is absent. In ε(ij)k, k is live and i and j are
dead.

3. The number of degrees of freedom for any term in the model is the product of the number
of levels associated with each dead subscript and the number of levels minus 1 associated
with each live subscript. Thus for (τβ)ij is (a− 1)(b− 1), and ε(ij)k is ab(n− 1).

4. Each term in the model either has a variance component or a fixed factor associated with
it. If an interaction contains at least one random effect, the entire interaction is considered
to be random. Thus the variance component for β is σβ and the effect of the fixed effect is
represented by the sum of squares of the model components associated with that factor,

divided by the associated degrees of freedom. Thus the effect for A is
∑a
i=1 τ

2
i

a−1 .

5. To obtain the expected mean squares, prepare the following table. There is a row for each
model component and a column for each subscript. Over each subscript, write the number
of levels of the factor associated with that subscript and whether the factor is fixed (F )
or random (R). Replicates (associated with ε) are always considered to be random.

a) In each row, write a 1 if one of the dead subscripts in the row components matches
the subscripts in the column:

F F R
a b n

Factor i j k

τi
βj

(τβ)ij
ε(ij)k 1 1

b) In each row, if any of the subscripts on the row component match the subscript in
the column, write 0 if the column is headed by a fixed factor and a 1 if the column
is headed by a random factor

F F R
a b n

Factor i j k

τi 0
βj 0

(τβ)ij 0 0
ε(ij)k 1 1 1

80



7.3 Rules for Expected Mean Squares

c) In the remaining empty row positions, write the number of levels shown above the
column heading

F F R
a b n

Factor i j k

τi 0 b n
βj a 0 n

(τβ)ij 0 0 n
ε(ij)k 1 1 1

d) To obtain the expected mean square for any model component, first cover all columns
headed by live subscripts on that component. Then, in each row that contains at least
the same subscripts as those on the component being considered, take the product
of the visible numbers and multiply by the appropriate fixed of random factor. The
sum of these quantities is the expected means square of the model component being
considered.

F F R
a b n

Factor i j k MSE

τi 0 b n σ2
ε + bn

(∑
τ2i

a−1

)
+ nσ2

τβ

βj a 0 n anσ2
β + σ2

ε

(τβ)ij 0 0 n nσ2
τβ + σ2

ε

ε(ij)k 1 1 1 σ2
ε

Suppose we want to test if H0 : τ1 = · · · = τa using the expected means calculated above. Thus
we can try to isolate the term

∑
τ2
i . Thus we will reject H0 if

MSA

MSAB
> Fa−1,(a−1)(b−1),α

Suppose we want to test H0 : σ2
β = 0. Thus we would reject H0 if

MSB

MSE
> Fb−1,ab(n−1),α

Suppose we want to test H0 : σ2
τβ = 0. Thus we would reject H0 if

MSAB

MSE
> F(a−1)(b−1),(n−1)ab,α

Consider the following model:

yijkl = µ+ τi + βj + αk + (τβ)ij + (τα)ik + (βα)jk + (τβα)ijk + ε(ijk)l

where A is fixed, and B and C are random.

F R R R
a b c n

Factor i j k l E(MSE)

τi 0 b c n bcn
(∑

τ2

a−1

)
+ cnσ2

τβ + bnσ2
τα + nσ2

τβα + σ2
ε

βj a 1 c n acnσ2
β + cnσ2

τβ + anσ2
βα + nσ2

τβα + σ2
ε

αk a b 1 n abnσ2
α + bnσ2

τα + anσ2
βα + nσ2

τβα + σ2
ε

(τβ)ij 1 1 c n cnσ2
τβ + nσ2

τβα + σ2
ε

(τα)ik 1 b 1 n bnσ2
τα + nσ2

τβα + σ2
ε

(βα)jk a 1 1 n anσ2
βα + nσ2

τβα + σ2
ε

(τβα)ijk 1 1 1 n nσ2
τβα + σ2

ε

ε(ijk)l 1 1 1 1 σ2
ε
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7 ANOVA and Linear Mixed Effects Models

Suppose we wish to test H0 : τ1 = · · · = τa = 0. We can see from the expected MSEs that we
cannot isolate the

∑
τ2 term. Thus no exact F-test exists. However, we can use an approximate

test. Consider the following

γ1 = MSA+MSABC =⇒ E(γ1) = bcn

(∑
τ2

a− 1

)
+ cnσ2

τβ + bnσ2
τα + nσ2

τβα + σ2
ε + nσ2

τβα + σ2
ε

γ2 = MSAB +MSAC = cnσ2
τβ + nσ2

τβα + σ2
ε + bnσ2

τα + nσ2
τβα + σ2

ε

Thus we can see that γ1 − γ2 = bcn
(∑

τ2

a−1

)
. Therefore we can use the following approximation

to test H0

F ∗ =
MSA+MSABC

MSAB +MSAC
∼approx Fp,q

However, how do we find p and q?

Theorem 29 (Satterthwaite’s Approximation) Let ui ∼ χ2
ni for i = 1, . . . , k. Let U =∑K

i=1 aiui. Then we can say that U ∼approx χ2
a∗, where

a∗ =
(
∑
aiui)

2∑(
(aiui)2

ni

)
Thus in the above question, we know that the degrees of freedom associated with MSA are
a− 1, the degrees of freedom associated with MSABC are (a− 1)(b− 1)(c− 1), the degrees of
freedom associated with MSAB are (a− 1)(b− 1), and the degrees of freedom associated with
MSAC are (b− 1)(c− 1). Thus we have

p ≈ (MSA+MSABC)2

(MSA2/(a− 1)) + (MSABC2/((a− 1)(b− 1)(c− 1)))

q ≈ (MSAB +MSAC)2

(MSAB2/((a− 1)(b− 1))) + (MSAC2/((b− 1)(c− 1)))

7.4 Linear Mixed Models

Suppose we have the following model

y = Xβ + Zu + ε; ε ∼ N (0,R); u ∼ N (0,D); u ⊥⊥ ε

Lets use the MLE framework to find the MLE of β and BLUP of u. We know that y|u ∼
N (Xβ + Zu,R). Thus we can get the joint distribution of y and u in the following way:

f(y,u) = fy|u(y|u)fu(u) ∝ exp
{
−1

2
(y −Xβ − Zu)′R−1(y −Xβ − Zu)

}
exp

{
−1

2
u′D−1u

}

` ∝ −1

2

[
(y −Xβ − Zu)′R−1(y −Xβ − Zu) + uD−1u

]
Differentiating with respect to β and u, we get

(1)
∂`

∂β
∝ X′R−1Xβ + XR−1Zu−XR−1y

(2)
∂`

∂u
∝ Z′R−1Zu + ZR−1Xβ − Z′R−1y + D−1u
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7.4 Linear Mixed Models

We can rewrite it in the following way[
X′R−1X XR−1Z
Z′R−1X Z′R−1Z + D−1

] [
β
u

]
=

[
X′R−1y
Z′R−1y

]
These set of equations above are known as ”Henderson’s Normal Equations”. Let β̃ and ũ be
the solutions to these equations. From the second equation, we have

Z′R−1Xβ̃ + (Z′R−1Z + D−1)ũ = Z′R−1y

ũ = (Z′R−1Z + D−1)−1Z′R−1(y −Xβ̃)

Notice that V = cov(y) = cov(Xβ + Zu + ε) = Z′DZ + R−1. We can show that V−1 =
R−1 −R−1Z(Z′R−1Z + D−1)−1Z′R−1. Thus looking at the first equation, we have

X′R−1Xβ̃ + X′R−1Zũ = X′R−1y

X′R−1Xβ̃ + X′R−1Z(Z′R−1Z + D−1)−1Z′R−1(y −Xβ̃) = X′R−1y

X′(R−1−R−1Z(Z′R−1Z+D−1)−1Z′R−1)Xβ̃−X(R−1−R−1Z(Z′R−1Z+D−1)−1Z′R−1)y = 0

X′V−1Xβ̃XV−1y

Thus we arrive at the MLE of β

β̃ = (X′V−1X)−1X′V−1y

To obtain ũ, we have
(Z′R−1Z + D−1)DZ′ = Z′R−1ZDZ′ + Z′

= Z′R−1(ZDZ′ + R) = Z′R−1V

Thus we have
DZ′V−1 = (Z′R−1Z + D−1)−1Z′R−1

Therefore, we have
ũ = DZ′V−1(y −Xβ̃)

Lets now derive the variances and covariances of the estimates. We know that cov(u) = D and
cov(ε) = R.

cov(y,u′) = cov(Xβ + Zu + ε,u′) = Zcov(u,u′) = ZD

cov(β̃) = (X′V−1X)−1X′V−1cov(y)V−1X(X′V−1X)−1

Since cov(y) = V, we have that

cov(β̃) = (X′V−1X)−1

Let P = V−1 −V−1X(X′V−1X)−1X′V−1. Then we have

1. P′ = P

2. PX = 0

3. PVP = P

We can re-write µ̃ as
µ̃ = DZ′V−1(Y −Xβ)

= DZ′(V−1 −V−1X(X′V−1X)−1X′V−1)y

= DZ′Py

Thus we can see that
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7 ANOVA and Linear Mixed Effects Models

1. cov(µ̃) = DZ′PVPZD′ = DZ′PZD

2. cov(β̃, µ̃) = cov((X′V−1X)−1X′V−1y,DZ′Py) = (X′V−1X)−1X′V−1VPZD

= (X′V−1X)−1X′PZD = 0

since PX = 0 =⇒ X′P = 0′.

3. cov(β̃,u) = cov((X′V−1X)−1X′V−1y,u) = (X′V−1X)−1X′V−1cov(Xβ + Zu + ε,u) =
(X′V−1X)−1X′V−1ZD

4. cov(ũ,u) = cov(DZ′Py,u) = DZ′PZD

5. cov(ũ−u) = cov(ũ)+ cov(u)−2cov( ˜u,u) = DZ′PZD+D−2DZ′PZD = D−DZ′PZD

6. cov(β̃, ũ− u) = cov(β̃, ũ)− cov(β̃,u) = −(X′V−1X)−1X′V−1ZD
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8 Multivariate Statistics

8.1 Graphical Gaussian Models

Let Y ∼ N (0,Σ). We can specify the joint distribution by factoring it in the following way.

P (Y) = P (Y1)P (Y2|Y1) . . . P (Yn|Y1, . . . Yn−1)

We can use a DAG or Bayesian Network to represent the dependencies

1

2

3

4

Figure 8.1: A Bayesian network or DAG

We can express this DAG as the following linear models:

Y1 = 0 + η1, η1 ∼ N (0, d1) d1 = σ11

Y2 = a21y1 + η2, η2 ∼ N (0, d2) d2 = var(Y2|Y1)

Y3 = a31y1 + a32y2 + η3, η3 ∼ N (0, d3) d3 = var(Y3|Y2, Y1)

...

Yi =
i−1∑
j=1

aijyj + ηi, ηi ∼ N (0, di) di = var(Yi|Y1, . . . , Yi−1)

Since the ηi completely specify P (Yi|Y1, . . . , Yi−1), and since the densities factor, we know that
the ηi are independent. Thus we can write our model as the following:

(1) Y = AY + η, η ∼ N (0,D) D = diag(d1, d2, . . . , dn)

We also know that A will have the following form:

A =


0 0 0 . . . 0
∗ 0 0 . . . 0
∗ ∗ 0 . . . 0
...

...
...

. . .
...

∗ ∗ ∗ . . . 0


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8 Multivariate Statistics

From (1), we have

(I−A)Y = η =⇒ var(Y) = (I−A)−1D(I−A)−T

(I−A)−1D(I−A)−T = Σ

= LDL′ = LD1/2D1/2L′ = L̃L̃′

We can see that this is the Cholesky decomposition. How do you get Aij from Σ? We know
that

Yi = a′iY<i + ηi

From this, we know that

E[Yi|Y<i] = a′iY<i

From properties of a Normal distribution, we have

E[Yi|Y<i] = µYi + Σ(i,<i)Σ
−1
(<i,<i)(Y<i − µY<i) = Σ(i,<i)Σ(<i,<i)Y<i

Thus we can see that

E[Yi|Y<i] = a′iY<i = Σ(i,<i)Σ
−1
(<i,<i)Y<i =⇒ a′i = Σ(i,<i)Σ

−1
(<i,<i)

where

var

([
Y<i

Yi

])
=

[
Σ(<i,<i) Σ(<i,i)

Σ(i,<i) Σ(i,i)

]
We also know that

var(Yi|Y<i) = Σ(i,i) −Σ(i,<i)Σ
−1
(<i,<i)Σ(<i,i) = di

Therefore, we have a way to find A and D. One important property of this model is that if
aij = 0, then yi is conditionally independent of yj given y1, . . . , yj−1, yj+1, . . . , yi−1. Thus, this
gives us a way to induce sparsity from graphs.

Definition 55 A matrix A is sparse if it has at most m non-zero elements in each row.

Alternatively we can think of this as no node having more than m parents.

1

2

3

4

5

6

7

Figure 8.2: A Bayesian network of 7 variables with at most 3 parents (or ”neighbors”) for each
node.

Since A is sparse, this means that (I − A) is sparse. However it is important to not that
(I−A)−1 need not be sparse. Since (I−A)′D(I−A) = Σ, we know that Σ−1 will be sparse.
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8.2 Matrix Normal, Inverse Wishart, and Bayesian Regression

Let Y ∈ Rn×m be a response matrix with m dependent variables and n observations. Let
X ∈ n× p. How would we perform linear regression using this response matrix?
We can vectorize Y and then perform standard linear regression

y1

y2
...

ym

 =


X 0 . . . 0
0 X . . . 0
...

...
. . .

...
0 0 . . . X



β1

β2
...

βm

+


e1

e2
...

em

 =⇒ Ỹ = (I⊗X)B + e

How do we model e?
Suppose we modeled it such as:

cov(ei, ej) = uijV i = 1, . . . ,m j = 1, . . . ,m

Thus we have

cov(e) = {cov(ei, ej)} =


u11V u12V . . . u1mV
u21V u22V . . . u2mV

...
...

. . .
...

um1V um2V . . . ummV

 = U⊗V

Definition 56 U⊗V is called the kronecker product.

We can explore the properties of the kronecker product by looking at

(x′ ⊗A)(y ⊗B)

=
[
x1A x2A . . . xnA

]

y1B
y2B

...
ynB

 =
n∑
i=1

xiyiAB = (x′y)AB

We can generalize this by looking at

(A⊗B)(C⊗D)

=


a1∗

⊗
B

...
an∗

⊗
B


([c∗1 ⊗D c∗2 ⊗D . . . c∗r

⊗
D
])

We can see that the (i, j)th block is

(a′i∗ ⊗B)(c∗j ⊗D) = (a′i∗c∗j)BD

Therefore we have that
(A⊗B)(C⊗D) = AC⊗BD

Other properties that we have is that

1. (A⊗B) = A−1 ⊗B−1

2. Cholesky Decomposition (LAL′A ⊗ LBL′B) = (LA ⊗AB)(L′A ⊗ L′B)

3. (A⊗B)′ = A′ ⊗B′
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4. PATAP′A ⊗PBTBP′B = (PA ⊗PB)(TA ⊗TB)(P′A ⊗P′B)

5. If A ∈ Rm×m and B ∈ Rn×n, then det(A⊗B) = det(A)ndet(B)m

6. If A and B are positive definite, then A⊗B is positive definite.

Back to the model, we have

Ỹ = (I⊗X)B + e e ∼ N (0,U⊗V)

Let z = Ỹ − (I⊗X)B. Thus we have

p(z) ∝ 1

|U⊗V|1/2
exp

{
−1

2
z′(U⊗V)z

}

=
1

|U|n/2|V|m/2
exp

{
−1

2
z′(U⊗V)z

}
Assuming B = 0, we have that

p(vec(Y)) =
1

(2π)nm/2|U|n/2|V|m/2
exp

{
−1

2
vec(Y)′(U−1 ⊗V−1)vec(Y)

}
Therefore, we have vec(Y) ∼ N (0,U⊗V).

Definition 57 The term vec(Y)′(U−1 ⊗V−1)vec(Y) is known as a Tensor System.

We will digress slightly to look at products of the following form:

(A⊗B)vec(X) = vec(C)

where X =
[
x1 . . . xn

]
.

(A⊗B)vec(X) =

a11B a12B . . . a1nB
...

...
. . .

...
am1B am2B . . . amnB


x1

...
xn

 =


∑n

j=1 aijBxj
...∑n

j=1 amjBxj


We can see that

n∑
j=1

aijBxj = B(
n∑
j=1

aijxj) = BXai∗

Therefore, we have that

(A⊗B)vec(X) =


BXa1∗
BXa2∗

...
BXam∗

 = vec(BXA′)

Another Digression: lets now look at

vec(Y)′vec(X)

where Y =
[
y1 . . . ym

]
and X =

[
x1 . . . xm

]
. Thus we have that

vec(Y)′vec(X) =
m∑
i=1

y′ixi =
m∑
i=1

tr(y′ixi) =

m∑
i=1

tr(xiy
′
i) = tr(

m∑
i=1

xiy
′
i) = tr(XY′)

Going back to the multivariate normal model, we have that

vec(Y)′(U−1⊗V−1)vec(Y) = vec(Y)′vec(V−1YU−1) = tr(V−1YU−1Y′) = tr(Y′V−1YU−1)
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8.2 Matrix Normal, Inverse Wishart, and Bayesian Regression

Definition 58 The Matrix-Variate Normal is a random matrix Y ∈ Rn×m, denoted Y ∼
MN(M,V,U), such that

p(Y) =
1

(2π)nm/2|U|n/2|V|m/2
exp

{
−1

2
tr((Y −M)′V−1(Y −M)U−1)

}
From this, we can see that if Y ∼MN(M,V,U) ⇐⇒ vec(Y) ∼ N (vec(M),U⊗V).

We can now discuss the Bayesian conjugate Matrix Normal-Inverse Wishart model. Suppose
we have the following setup

Y = XB + E

where Y ∈ Rn×m, X ∈ Rn×p, B ∈ Rp×m, and E ∈ Rn×m. Let E ∼ MN(0, In,Σ). Lets take a
look at the LS-Estimate of this model. We have that

Xα ⊥ (Y −XB)∀α =⇒ 〈Y −XB,Xα〉 = 0 ∀α

=⇒ α〈Y −XB,Xα〉 = 〈(Y −XB)α,Xα〉 = 0 ∀α

=⇒ X′(Y −XB) = 0

=⇒ X′XB = X′Y

Thus we have B̂ = (X′X)−1X′Y.

Definition 59 The Inverse-Wishart Distribution is a probability distribution valid over
the cone of positive definite matrices. If Σ has a Inverse-Wishart distribution, denoted Σ ∼
IW (ν,S), then it has the following pdf:

Sν/2

2νp/2Γp(ν/2)
|Σ|−(ν+p+1)/2exp

{
−1

2
tr(SΣ−1)

}
where S,Σ ∈ Rp×p.

Definition 60 We say that (B,Σ) is distributed Matrix-Normal Inverse-Wishart , de-
noted (B,Σ) ∼MNIW (B,Σ|M,V, ν,S), if

p(B,Σ) = IW (Σ|ν,S)×MN(B|M,V,Σ)

Consider the following Bayesian Model

Y|B,Σ ∼MN(XB, In,Σ)

B|Σ ∼MN(C,V,Σ)

Σ ∼ IW (ν,S)

We can see that B,Σ is distributed Matrix-Normal Inverse-Wishart. Suppose that we wish to
draw posterior samples from (B,Σ|Y). We know that

p(B,Σ|Y) ∝ p(Σ)p(B|Σ)p(Y|B,Σ)

∝ |Σ|−(ν+m+1)/2exp

{
−1

2
tr(SΣ−1)

}
|Σ|p/2exp

{
−1

2
tr((B−C)′V−1(B−C)Σ−1)

}
× |Σ|n/2exp

{
−1

2
tr((Y −XB)′(Y −XB)Σ−1)

}
(8.1)
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= |Σ|−(ν+m+1+n+p)/2exp

{
−1

2
tr((S + C′V−1C + Y′Y)Σ−1)

}
× exp

{
−1

2
tr((B′V−1B + B′X′XB− (Y′X + C′V−1)B)Σ−1)

}
(8.2)

= |Σ|−(ν+m+1+n+p)/2exp

{
−1

2
tr((S + C′V−1C + Y′Y)Σ−1)

}
× exp

{
−1

2
tr((B′(V−1 + XX′)B− (Y′X + C′V−1)B)Σ−1)

}
(8.3)

let M = (V−1 + XX′)−1 and m = X′Y + V−1C. Thus we have

= |Σ|−(ν+m+1+n+p)/2exp

{
−1

2
tr((S + C′V−1C + Y′Y)Σ−1)

}
× exp

{
−1

2
tr((B′M−1B−m′B)Σ−1)

}
(8.4)

= |Σ|−(ν+m+1+n)/2exp

{
−1

2
tr((S + C′V−1C + Y′Y −m′Mm)Σ−1)

}
× |Σ|−p/2exp

{
−1

2
tr(((B−m)′M−1(B−m)Σ−1)

}
(8.5)

Thus we can see that Σ ∼ IW (ν+n,S+C′V−1C+Y′Y−m′Mm) and B|Σ ∼MN(Mm,M,Σ).
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